首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA of bacteriophage BF23 possesses two structural features, localized single-chain interruptions and a large terminal repetition, previously described for T5, a closely related virus. As is the case for T5, single-chain interruptions occur with variable frequencies at a small number of fixed sites within one strand of the double-stranded BF23 genome. The sites where interruptions occur with the highest frequencies were napped by an electrophoretic analysis of the single-stranded fragments produced by denaturation of BF23 DNA. The positions of these fragments were determined by degrading BF23 DNA to various extents with lambda exonuclease and observing the relative order with which they were (i) degraded or (ii) released intact from the undenatured duplex. The exact locations of the interruptions were determined from analysis of analogous duplex fragments produced by degrading exonuclease III-treated BF23 DNA with a single-strand-specific endonuclease. BF23 has five principal sites (located at 7.9, 18.7, 32.4, 65.8, and 99.6% from the left end of the DNA) where interruptions occur in most molecules. The principal interruptions in T5 DNA occur at similar positions. The locations of eight secondary interruptions in BF23 DNA were also determined. In general, BF23 DNA has fewer secondary interruptions than t5 dna, although there is at least one location where an interruption occurs with a greater frequency in BF23. The presence of a terminal repetition in BF23 DNA was demonstrated by annealing ligase-repaired molecules that had been partially digested with lambda exonuclease. If the complementary sequences at both ends of the DNA were exposed by exonuclease treatment, the duplex segment that resulted from annealing could be released by digestion with a single-strand-specific endonuclease. This segment was analyzed by agarose gel electrophoresis and found to represent 8.4% of BF23 DNA.  相似文献   

2.
Upon denaturation, T5 DNA yields a large number of discrete, single-chain fragments that can be resolved by agarose gel electrophoresis. The positions of the more prominent of these fragments in the T5 duplex were determined by analyzing their sensitivity to digestion with λ exonuclease and their distribution among EcoRI fragments of T5 DNA. These experiments also provide firm evidence concerning the polarity of the strands in T5 DNA. An analogous study was carried out on the fragments produced by treating exonuclease III-degraded T5 DNA with the single-strand-specific SI endonuclease. This procedure yielded over 40 discrete duplex fragments that could be resolved with considerable precision by agarose gel electrophoresis. The positions of most of these fragments were determined by analyzing EcoRI fragments of T5st(+) and T5st(0) DNA. Over 20 sites where single-chain interruptions can occur in T5 DNA were identified, and the distribution of interruptions within the terminal repetition was shown to be identical at both ends of the molecule. A precise value for the size of the terminal repetition in T5 DNA was obtained by analyzing SI endonuclease digests of ligase-repaired, circular T5 DNA in agarose gels. The repeated segment represented 8.3% of the T5st(+) DNA. The results of this study also provide information concerning the properties of λ exonuclease. Hydrolysis by this enzyme was not terminated when single-chain interruptions were encountered either in the strand being degraded or in the complementary strand.  相似文献   

3.
New physical map of bacteriophage T5 DNA.   总被引:10,自引:4,他引:6       下载免费PDF全文
The locations of 103 cleavage sites, produced by 13 restriction endonucleases, were mapped on the DNA of bacteriophage T5. Single- and double-digest fragment sizes were determined by agarose gel electrophoresis, using restriction fragments of phi X174 DNA and lambda DNA as molecular weight standards. Map coordinates were determined by a computer-based least-squares procedures (J. Schroeder and F. Blattner, Gene [Amst] 4:167-174, 1978). The fragment sizes predicted by the final map are all within 2% of the measured values. Based on this analysis, T5st(+) DNA contains 121,300 base pairs (Mr, 80.3 X 10(6) and has a terminal repetition of 10,160 base pairs (Mr, 6.7 X 10(6)). Restriction endonuclease analysis after treatment with exonuclease III and a single-strand-specific endonuclease allowed precise localization of five of the natural single-chain interruptions in T5 DNA. Revised locations for several T5 deletions were also determined.  相似文献   

4.
A physical map of the bacteriophage T5 genome was constructed by ordering the fragments produced by cleavage of T5 DNA with the restriction endonucleases SalI (4 fragments), SmaI (4 fragments), BamI (5 fragments), and HpaI (28 fragments). The following techniques were used to order the fragments. (i) Digestion of DNA from T5 heat-stable deletion mutants was used to identify fragments located in the deletable region. (ii) Fragments near the ends of the T5 DNA molecule were located by treating T5 DNA with lambda exonuclease before restriction endonuclease cleavage. (iii) Fragments spanning other restriction endonuclease cleavage sites were identified by combined digestion of T5 DNA with two restriction endonucleases. (iv) The general location of some fragments was determined by isolating individual restriction fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. (v) Treatment of restriction digests with lambda exonuclease before digestion with a second restriction enzyme was used to identify fragments near, but not spanning, restriction cleavage sites. (vi) Exonucleases III treatment of T5 DNA before restriction endonuclease cleavage was used to locate fragments spanning or near the natural T5 single-chain interruptions. (vii) Analysis of the products of incomplete restriction endonuclease cleavage was used to identify adjacent fragments.  相似文献   

5.
Mutations of bacteriophage T5 were isolated which lack one or more of the natural single-chain interruptions that occur in the mature DNA of this virus. Interruption-deficient mutants were detected by screening survivors of hydroxylamine mutagenesis for altered DNA structure by electrophoresis in agarose slab gels. Over 60 independent mutants were isolated from a survey of approximately 800 phages particles. All of the mutants were viable and could be grouped into two classes. Mutants in one class lacked one of the localized sites where interruptions occur in T5 DNA. To date, mutants that affect five different sites have been obtained. Mutants in the other class were essentially free from interruptions or had a reduced frequency of interruptions throughout the genome. The members of this class included several amber mutants. Complementation tests indicated that at least two genes are required for the presence of interruptions in mature T5 DNA.  相似文献   

6.
An examination was made of the properties of T5HA4, a mutant of bacteriophage T5 that lacks the single-chain interruption that occurs at 7.9% from the left end of the genome. The DNAs of T5HA4 and the wild type were compared by electrophoresis in agarose gels of both single-stranded fragments produced by denaturation and duplex fragments generated by sequential treatment with exonuclease III and SI nuclease. These studies demonstrated that T5HA4 also lacks an interruption that occurs at 99.6% in wild-type DNA. The interruptions at 7.9 and 99.6% therefore occur within the 8.3% of T5 DNA that is terminally repetitious. Evidence on the location of other interruptions within the terminal repetition was also obtained. Analysis of T5HA4 with a restriction endonuclease indicated that the interruption deficiency is not due to a deletion or addition mutation. The injection of T5HA4 DNA into a host bacterium was found to occur, as with the wild type, in a two-step manner. The interruption at 7.9% is therefore not required for stopping DNA transfer after the initial 8% segment has been injected.  相似文献   

7.
A T5 mutant whose DNA has two sites where single-chain interruptions occur with a higher frequency than in wild-type DNA was isolated. Both sites occurred within the same strand as do the natural interruptions in T5 DNA, and both were due to alteration of the mechanism that generates the interruptions.  相似文献   

8.
The properties of viable mutants of bacteriophage T5 that lack, singly, each of the four major sites at which single-chain interruptions normally occur in T5 DNA are described. The mutations responsible for loss of each interruption were mapped by analysis with HhaI, a restriction endonuclease with a cleavage site (pGCGC) that occurs at the 5' termini of the major interruptions (B. P. Nichols and J. E. Donelson, J. Virol. 22:520-526, 1977). For each mutant tested, loss of a specific interruption resulted in loss of a specific HhaI cleavage site. Multiple single-site mutants were constructed to determine the effect of loss of more than one interruption on phage viability. These recombinants, including a phage that lacks the four major interruptible sites, were fully viable and did not exhibit a compensating increase in the frequency of minor interruptions. The effect of loss of a specific interruption on genetic recombination was tested in two-factor crosses with markers that occur close to, but on opposite sites of, the interruption. Loss of the interruptible site did not affect recombination frequency.  相似文献   

9.
The Arrangement of Information in DNA Molecules   总被引:12,自引:2,他引:10       下载免费PDF全文
The anatomy of DNA molecules isolated from mature bacteriophage is reviewed. These molecules are linear, duplex DNA consisting mainly of uninterrupted polynucleotide chains. Certain phage (T5 and PB) contain four specifically located interruptions. While the nucleotide sequence of most of these molecules is unique (T5, T3, T7, λ), some are circular permutations of each other (T2, T4, P22). Partial degradation of these DNA molecules by exonuclease III predisposes some of them to form circles upon annealing, but indicating they are terminally redundant.  相似文献   

10.
Site-specific cleavages of intracellular DNA were demonstrated in bacteriophage T7 6am-infected cells. The sites of the cleavages were located at 46.8 and 68.7% (1% of the T7 DNA length = 400 base pairs) from the left end of the T7 genome. These cleavages required the products of genes 3 (endonuclease), 4 (DNA primase), and 5 (DNA polymerase). However, the product of gene 6 (exonuclease) must be absent. Site-specific cleavage was also shown to occur in vitro in extracts of T7 6am-infected cells, although at a different site: 82.8% from the left end of the T7 genome.  相似文献   

11.
The substrate specificity of 49+-enzyme was investigated in vitro. The enzyme showed a marked preference for rapidly sedimenting T4 DNA (greater than 1000 S) when helix-destabilizing proteins from Escherichia coli or phage T4 were added to the reaction. Regular replicative T4 DNA (200-S DNA) or denatured T4 DNA was not cleaved by the enzyme in the presence of these proteins but if they were omitted from the reaction both DNAs become good substrates for the enzyme. 200-S DNA was cleaved at its natural sites of single strandedness which occur at one-genome intervals. Gaps in T4 DNA which were constructed by treatment of a nicked DNA with exonuclease III were also cleaved by 49+-enzyme in the absence of helix-destabilizing proteins. Single-stranded T4 DNA was extensively degraded and up to 50% of the material was found to be acid-soluble in a limit digest. The degradation products were predominantly oligonucleotides of random size. No preference for a 5'-terminal nucleotide was observed in material from a limit digest with M13 DNA. Double-stranded DNA was nicked upon exposure to 49+-enzyme and double-strand breakage finally occurred by an accumulation of single-strand interruptions. No acid-soluble material was produced from native T4 DNA. The introduction of nicks in native DNA did not improve its properties as a substrate for the enzyme. Double-stranded DNA was about 100-fold less sensitive to the enzyme than single-stranded DNA.  相似文献   

12.
The DNA of Col E1 replicates from a unique origin located at a distance of 17-19% of the genome length from the single Eco RI clevage site. The nucleotide sequence about this site has been determined by a combination of RNA and DNA sequencing techniques. The principal features of the sequence are two palindromes, one of which resembles a palindrome located in the intercistronic region of 0X174. The sequence also contains stretches of purine and pyrimidine clusters of the following compositions: pAT5G, pC2T5G, pGT5G. The origin sequence demonstrates that initiation of DNA replication takes place in an intercistronic region of Col E1DNA, although the possibility that this region makes small polypeptides 30-40 residues long cannot be strictly eliminated at this time.  相似文献   

13.
The application of T7 and lambda exonuclease to phosphorothioate-based oligonucleotide-directed mutagenesis was investigated. Oligonucleotide primers designed to introduce single or double base mismatches, an insertion or a deletion (each of 16 bases) were annealed to M13 phage derivatives. Double stranded closed circular DNA (RF IV) containing phosphorothioate internucleotidic linkages in the (-)strand was prepared enzymatically from these templates. A nick was introduced into the (+)strand of the hetroduplex DNA. This nicked DNA (RF II) was subjected to treatment with T7 or lambda exonuclease. Both of these enzymes were able to degrade almost all of the viral (+)strand when presented with DNA containing one or two base mismatches. Repolymerisation of the DNA after the gapping reaction, followed by transfection into E. coli cells gave mutational efficiencies of up to 95%. In the case of RF II DNA prepared with insertion or deletion primers these exonucleases could only partially degrade the viral (+)strand but were nevertheless highly efficient in such mutagenesis experiments.  相似文献   

14.
DNA deoxyribophosphodiesterase.   总被引:17,自引:0,他引:17       下载免费PDF全文
A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deoxyribophosphodiesterase (dRpase). The protein presumably is active in DNA excision repair to remove a sugar-phosphate residue from an endonucleolytically incised apurinic/apyrimidinic site, prior to gap filling and ligation.  相似文献   

15.
The processing of newly replicated concatameric T5 DNA into both single stranded DNA changed of unit length and single-stranded fragments of sizes comparable to those found in mature T5 virion DNA occurs in the absence of late T5 protein synthesis. The formation of unit-length, single-stranded DNA chains does not require the early T5 gene D15 nuclease: however, the subsequent formation of the single-stranded fragments does require that the D15 nuclease be functional. A reexamination of the properties of the purified D15 nuclease under a variety of conditions showed that, in addition to functioning as a 5' leads to 3' exonuclease, the enzyme can also introduce endonucleolytic scissions into mature T5 DNA in a reaction that requires duplex T5 DNA and preexisting, single-stranded interruptions.  相似文献   

16.
Lesion selectivity in blockage of lambda exonuclease by DNA damage.   总被引:4,自引:4,他引:0       下载免费PDF全文
Various kinds of DNA damage block the 3' to 5' exonuclease action of both E. coli exonuclease III and T4 DNA polymerase. This study shows that a variety of DNA damage likewise inhibits DNA digestion by lambda exonuclease, a 5' to 3' exonuclease. The processive degradation of DNA by the enzyme is blocked if the substrate DNA is treated with ultraviolet irradiation, anthramycin, distamycin, or benzo[a]-pyrene diol epoxide. Furthermore, as with the 3' to 5' exonucleases, the enzyme stops at discrete sites which are different for different DNA damaging agents. On the other hand, digestion of treated DNA by lambda exonuclease is only transiently inhibited at guanine residues alkylated with the acridine mustard ICR-170. The enzyme does not bypass benzo[a]-pyrene diol epoxide or anthramycin lesions even after extensive incubation. While both benzo[a]-pyrene diol epoxide and ICR-170 alkylate the guanine N-7 position, only benzo[a]-pyrene diol epoxide also reacts with the guanine N-2 position in the minor groove of DNA. Anthramycin and distamycin bind exclusively to sites in the minor groove of DNA. Thus lambda exonuclease may be particularly sensitive to obstructions in the minor groove of DNA; alternatively, the enzyme may be blocked by some local helix distortion caused by these adducts, but not by alkylation at guanine N-7 sites.  相似文献   

17.
K Okada 《Gene》1980,8(4):369-390
Using 13 deletion mutants of bacteriophage BF23, physical as well as genetic structures of that portion of the genome which is dispensable for phage growth were investigated. The dispensable region covers at least 15% of the genome of wild type BF23, extending from about 0.2 to 0.35 map unit. Restriction endonuclease (EcoRI and HindIII) cleavage sites and the sites of single-strand interruptions in this dispensable region were localized. It was found that the dispensable region contains an interruption site, which is missing in the mutant BF23st(0) used by Okada and Shimura (1980). Wild-type phage DNA is heterogeneous in the presence or absence of specific single-strand interruptions in this or in a neighboring region of the genome.  相似文献   

18.
1. Isolated mtDNA from Tetrahymena pyriformis strain GL is a linear duplex molecule with an average molecular weight of 32.6 - 10(6) and without internal gaps or breaks. Denaturation of this DNA results in single strands with a duplex hairpin at one end. The length of this hairpin varies between 0 and 5 micrometer within one preparation. 2. Uder renaturation conditions the single strands with hairpins are able to circularize in two ways, depending on the length of the hairpin. Circularization is also observed after partial digestion with exonuclease III of native strain GL mtDNA. 3. All these data fit a model (see Fig.2) in which the DNA is heterogeneous in length at both ends. At the left end a 10-micrometer duplication-inversion is present; part of this duplication-inversion is complementary to a region at the right end of the molecule. 4. The analogy between the structural peculiarities of strain GL mtDNA and of some linear viral DNAs is stressed.  相似文献   

19.
The three dimensional crystal structure of T5 5'-3' exonuclease was compared with that of two other members of the 5'-3' exonuclease family: T4 ribonuclease H and the N-terminal domain of Thermus aquaticus DNA polymerase I. Though these structures were largely similar, some regions of these enzymes show evidence of significant molecular flexibility. Previous sequence analysis had suggested the existence of a helix-hairpin-helix motif in T5 exonuclease, but a distinct, though related structure is actually found to occur. The entire T5 exonuclease structure was then compared with all the structures in the complete Protein Data Bank and an unexpected similarity with gamma-delta (gamma delta) resolvase was observed. 5'-3' exonucleases and gamma delta resolvase are enzymes involved in carrying out quite different manipulations on nucleic acids. They appear to be unrelated at the primary sequence level, yet the fold of the entire catalytic domain of gamma delta resolvase is contained within that of the 5'-3'exonuclease. Different large-scale helical structures are used by both families to form DNA binding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号