首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although the complement system has been implicated in liver regeneration after toxic injury and partial hepatectomy, the mechanism or mechanisms through which it participates in these processes remains ill-defined. In this study, we demonstrate that complement activation products (C3a, C3b/iC3b) are generated in the serum of experimental mice after CCl(4) injection and that complement activation is required for normal liver regeneration. Decomplementation by cobra venom factor resulted in impaired entry of hepatocytes into S phase of the cell cycle. In addition, livers from C3-deficient (C3(-/-)) mice showed similarly impaired proliferation of hepatocytes, along with delayed kinetics of both hepatocyte hyperplasia and removal of injured liver parenchyma. Restoration of hepatocyte proliferative capabilities of C3(-/-) mice through C3a reconstitution, as well as the impaired regeneration of C3a receptor-deficient mice, demonstrated that C3a promotes liver cell proliferation via the C3a receptor. These findings, together with data showing two waves of complement activation, indicate that C3 activation is a pivotal mechanism for liver regeneration after CCl(4) injury, which fulfills multiple roles; C3a generated early after toxin injection is relevant during the priming of hepatocytes, whereas C3 activation at later times after CCl(4) treatment contributes to the clearance of injured tissue.  相似文献   

3.
Recently, hepatocyte–sinusoid alignment (HSA) has been identified as a mechanism that supports the coordination of hepatocytes during liver regeneration to reestablish a functional micro-architecture (Hoehme et al. in Proc Natl Acad Sci 107(23):10371–10376, 2010). HSA means that hepatocytes preferentially align along the closest micro-vessels. Here, we studied whether this mechanism is still active in early hepatocellular tumors. The same agent-based spatiotemporal model that previously correctly predicted HSA in liver regeneration was further developed to simulate scenarios in early tumor development, when individual initiated hepatocytes gain increased proliferation capacity. The model simulations were performed under conditions of realistic liver micro-architectures obtained from 3D reconstructions of confocal laser scanning micrographs. Interestingly, the established model predicted that initiated hepatocytes at first arrange in elongated patterns. Only when the tumor progresses to cell numbers of approximately 4000, does it adopt spherical structures. This prediction may have relevant consequences, since elongated tumors may reach critical structures faster, such as larger vessels, compared to a spherical tumor of similar cell number. Interestingly, this model prediction was confirmed by analysis of the spatial organization of initiated hepatocytes in a rat liver tumor initiation study using single doses of 250 mg/kg of the genotoxic carcinogen N-nitrosomorpholine (NNM). Indeed, small clusters of GST-P positive cells induced by NNM were elongated, almost columnar, while larger GDT-P positive foci of approximately the size of liver lobuli adopted spherical shapes. From simulations testing numerous possible mechanisms, only HSA could explain the experimentally observed initial deviation from spherical shape. The present study demonstrates that the architecture of small cell clusters of hepatocytes early after initiation is still controlled by physiological mechanisms. However, this coordinating influence is lost when the tumor grows to approximately 4000 cells, leading to further growth in spherical shape. Our findings stress the potential importance of organ micro-architecture in understanding tumor phenotypes.  相似文献   

4.
Components of innate immunity have recently been implicated in the regulation of developmental processes. Most strikingly, complement factors appear to be involved in limb regeneration in certain urodele species. Prompted by these observations and anticipating a conserved role of complement in mammalian regeneration, we have now investigated the involvement of complement component C5 in liver regeneration, using a murine model of CCl(4)-induced liver toxicity and mice genetically deficient in C5. C5-deficient mice showed severely defective liver regeneration and persistent parenchymal necrosis after exposure to CCl(4.) In addition, these mice showed a marked delay in the re-entry of hepatocytes into the cell cycle (S phase) and diminished mitotic activity, as demonstrated, respectively, by the absence of 5-bromo-2'-deoxyuridine incorporation in hepatocytes, and the rare occurrence of mitoses in the liver parenchyma. Reconstitution of C5-deficient mice with murine C5 or C5a significantly restored hepatocyte regeneration after toxic injury. Furthermore, blockade of the C5a receptor (C5aR) abrogated the ability of hepatocytes to proliferate in response to liver injury, providing a mechanism by which C5 exerts its function, and establishing a critical role for C5aR signaling in the early events leading to hepatocyte proliferation. These results support a novel role for C5 in liver regeneration and strongly implicate the complement system as an important immunoregulatory component of hepatic homeostasis.  相似文献   

5.
6.
An oxystat system is described which is capable of maintaining steady-state oxygen partial pressures (PO2) at levels between 0.1 and 300 mm Hg for hours or even days in incubations of respiring cells. The system was used to study effects of the hepatotoxin carbon tetrachloride (CCl4) on lipid peroxidation and cell viability in isolated hepatocytes from phenobarbital-pretreated rats at various steady-state PO2. At PO2 below 35 mm Hg, with a maximum effect at 7 mm Hg, CCl4 induced an immediate lipid peroxidation, the rate of which slowed down during further incubation. AT PO2 between 35 and 70 mm Hg, CCl4 initially induced only slight lipid peroxidation, while there was a significant increase in lipid peroxidation after approximately 30 min. At PO2 above 100 mm Hg, no lipid peroxidation was induced by CCl4. At PO2 of 70 mm Hg and below, with the maximum effect at 3 mm Hg, CCl4 also induced marked losses of cell viability. Under anaerobic conditions and at PO2 greater than 70 mm Hg, CCl4 was without effect on the viability of the liver cells. Cells isolated from the pericentral area of the liver lobule showed more lipid peroxidation and loss of cell viability than cells from the periportal area of the lobule. These results provide further evidence for the decisive role of lipid peroxidation, preferentially induced at low PO2, in CCl4 liver injury.  相似文献   

7.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, stimulates proliferation and contractility in hepatic stellate cells, the principal matrix-producing cells in the liver, and inhibits proliferation via S1P receptor 2 (S1P(2)) in hepatocytes in rats in vitro. A potential role of S1P and S1P(2) in liver regeneration and fibrosis was examined in S1P(2)-deficient mice. Nuclear 5-bromo-2'-deoxy-uridine labeling, proliferating cell nuclear antigen (PCNA) staining in hepatocytes, and the ratio of liver weight to body weight were enhanced at 48 h in S1P(2)-deficient mice after a single carbon tetrachloride (CCl(4)) injection. After dimethylnitrosamine (DMN) administration with a lethal dose, PCNA staining in hepatocytes was enhanced at 48 h and survival rate was higher in S1P(2)-deficient mice. Serum aminotransferase level was unaltered in those mice compared with wild-type mice in both CCl(4)- and DMN-induced liver injury, suggesting that S1P(2) inactivation accelerated regeneration not as a response to enhanced liver damage. After chronic CCl(4) administration, fibrosis was less apparent, with reduced expression of smooth-muscle alpha-actin-positive cells in the livers of S1P(2)-deficient mice, suggesting that S1P(2) inactivation ameliorated CCl(4)-induced fibrosis due to the decreased accumulation of hepatic stellate cells. Thus, S1P plays a significant role in regeneration and fibrosis after liver injury via S1P(2).  相似文献   

8.
Annexin (Anx) A3 increases and plays important roles in the signalling cascade in hepatocyte growth in cultured hepatocytes. However, no information is available on its expression and role in rat liver regeneration. In the present study, AnxA3 expression was investigated to determine whether it also plays a role in the signalling cascade in rat liver regeneration. AnxA3 protein and mRNA level both increase in liver after administration of carbon tetrachloride (CCl4) or 70% partial hepatectomy. AnxA3 protein level increases in isolated parenchymal hepatocytes, but not in non-parenchymal liver cells, in these rat liver regeneration models. AnxA3 mRNA increases in hepatocytes after CCl4 administration. Anti-hepatocyte growth factor antibody suppresses this increase in AnxA3 mRNA level. These results demonstrate that AnxA3 expression increases in hepatocytes through a hepatocyte growth factor-mediated pathway in rat liver regeneration models, suggesting that AnxA3 plays an important role in the signalling cascade in rat liver regeneration.  相似文献   

9.
10.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   

11.
Intoxication of rats with CCl4 (1 ml/kg) resulted in the almost complete loss of glutamine synthetase (GS) specific activity and immunologically detectable enzyme protein known to be expressed exclusively in some hepatocytes of the perivenous zone of the liver acinus. During regeneration the specific activity as well as the original number of GS-positive (GS+) hepatocytes were reestablished. However, while the GS+ hepatocytes in control livers were arranged in up to 3 cell layers surrounding the central veins the same number of GS+ hepatocytes in regenerated livers formed a single cell layer only, most likely because the central veins were enlarged in diameter. Investigation of the nuclear pattern of GS+ and GS- hepatocytes of control animals in primary cultures revealed striking differences characterized by significantly more mononuclear diploid, binuclear diploid, and binuclear tetraploid cells among the GS+ hepatocytes and predominantly mononuclear tetraploid cells (70%) among the GS- hepatocytes. Immediately after liver damage by CCl4 and during regeneration small but significant changes in the nuclear pattern were noted for GS- hepatocytes. However, the first GS+ cells appearing during early regeneration showed a pattern of ploidy classes close to the original one found for GS- hepatocytes. These results indicate that new GS+ hepatocytes may be derived from formerly GS- cells which are induced to express GS if they have reached the border of the central veins.  相似文献   

12.
The liver regenerates and maintains its function and size after injury by counterbalancing cell death with compensatory cell division. During liver regeneration, injured sites release cytokines, which stimulate normally quiescent hepatocytes to re-enter cell division cycle. Using a mesoscale approach, we have implemented the first mathematical model that describes cytokine-induced dedifferentiation of hepatocytes and the subsequent initiation of DNA synthesis (G0/G1 and G1/S phase transitions of the cell cycle). The model accurately reproduces experimentally measured kinetics of various signaling intermediates and DNA synthesis in hepatocytes for varying degrees of liver damage, in both wild type and knockout backgrounds. Liver regeneration is known to be a robust process, as liver mass reconstitution still occurs in various knockout mice (albeit with different kinetics). We analyze the robustness of the model using methods of control analysis. Moreover, we discuss the system's bandpass filtering properties and delays, which arise from feedbacks and nested feed-forward loops.  相似文献   

13.
Solanum nigrum L. (SN) is an herbal plant that has been used as hepatoprotective and anti-inflammation agent in Chinese medicine. In this study, the protective effects of water extract of SN (SNE) against liver damage were evaluated in carbon tetrachloride (CCl4)-induced chronic hepatotoxicity in rats. Sprague-Dawley (SD) rats were orally fed with SNE (0.2, 0.5, and 1.0 g kg(-1) bw) along with administration of CCl4 (20% CCl4/corn oil; 0.5 mL kg(-1) bw) for 6 weeks. The results showed that the treatment of SNE significantly lowered the CCl4-induced serum levels of hepatic enzyme markers (GOT, GPT, ALP, and total bilirubin), superoxide and hydroxyl radical. The hepatic content of GSH, and activities and expressions of SOD, GST Al, and GST Mu that were reduced by CCl4 were brought back to control levels by the supplement of SNE. Liver histopathology showed that SNE reduced the incidence of liver lesions including hepatic cells cloudy swelling, lymphocytes infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by CCl4 in rats. Therefore, the results of this study suggest that SNE could protect liver against the CCl4-induced oxidative damage in rats, and this hepatoprotective effect might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects.  相似文献   

14.
AFP-containing hepatocytes were shown to lose the membrane antigen, localized in the region of bile capillaries, due to the mouse liver regeneration induced by CCl4 and paracetamol poisoning. Both in the liver regeneration and early postnatal ontogenesis the cessation of the AFP synthesis in hepatocytes coincides with the appearance of the bile capillary antigen on the cell surface. It is suggested that the AFP synthesis cessation is the result of the arrangement of cell contacts characteristic of the definitive liver balk.  相似文献   

15.
Arctium lappa Linne (burdock) is a perennial herb which is popularly cultivated as a vegetable. In order to evaluate its hepatoprotective effects, a group of rats (n = 10) was fed a liquid ethanol diet (4 g of absolute ethanol/ 80 ml of liquid basal diet) for 28 days and another group (n = 10) received a single intraperitoneal injection of 0.5 ml/kg carbon tetrachloride (CCl(4)) in order to potentiate the liver damage on the 21st day (1 day before the beginning of A. lappa treatment). Control group rats were given a liquid basal diet which did not contain absolute ethanol. When 300 mg/kg A. lappa was administered orally 3 times per day in both the 1-day and 7-day treatment groups, some biochemical and histopathological parameters were significantly altered, both in the ethanol group and the groups receiving ethanol supplemented with CCl(4). A. lappa significantly improved various pathological and biochemical parameters which were worsened by ethanol plus CCl(4)-induced liver damage, such as the ethanol plus CCl(4)-induced decreases in total cytochrome P-450 content and NADPH-cytochrome c reductase activity, increases in serum triglyceride levels and lipid peroxidation (the deleterious peroxidative and toxic malondialdehyde metabolite may be produced in quantity) and elevation of serum transaminase levels. It could even restore the glutathione content and affect the histopathological lesions. These results tended to imply that the hepatotoxicity induced by ethanol and potentiated by CCl(4) could be alleviated with 1 and 7 days of A. lappa treatment. The hepatoprotective mechanism of A. lappa could be attributed, at least in part, to its antioxidative activity, which decreases the oxidative stress of hepatocytes, or to other unknown protective mechanism(s).  相似文献   

16.
Morphological and biochemical changes characterizing the degree of liver damage and the development of liver repair were studied in rats fed 21 days on a low protein diet (LPD), a standard diet (SLD) and a high protein diet (HPD) and then given a single i.p. injection of tetrachlormethane (CCl4) in a dose of 0.75 ml/kg body weight. The HPD was found to increase sensitivity to CCl4, but it also promoted the liver repair process, as seen from the increment in liver DNA synthesis and the total DNA content of the liver, increased ploidy of the hepatocytes and growth of the size of their nuclei and of the hepatocytes themselves. An increase in the total surface area of the membranes of the granular endoplasmic reticulum and the inner and outer membrane of the mitochondria, but a decrease in the surface area of the membranes of the smooth endoplasmic reticulum, were also observed after the administration of CCl4. The LPD raised liver resistance to CCl4, but the development of liver repair activity differed from the process after the SLD and HPD, since polyploidy of the hepatocytes (especially the growth of octaploid cells) predominated and there was also an increase in the number of binuclear hepatocytes. Cell hypertrophy was expressed less in rats fed on the LPD than in animals given the HPD. As far as liver repair was concerned, the HPD showed no explicit advantages over the SLD.  相似文献   

17.
18.
While organ-specific stem cells with roles in tissue injury repair have been documented, their pathogenic significance in diseases and the factors potentially responsible for their activation remain largely unclear. In the present study, heart, kidney, brain, and skin samples from F344 transgenic rats carrying the GFP gene were transplanted into normal F344 rat liver one day after an intraperitoneal injection (i.p.) of carbon tetrachloride (CCl(4)) to test their differentiation capacity. The transplantation was carried out by female donors to male recipients, and vice versa. One week after transplantation, GFP antigen-positive cells with phenotypic characteristics of hepatocytes were noted. After two weeks, their extent increased, and at 4 weeks, large areas of strongly GFP-stained cells developed. All recipient livers had GFP antigen-positive hepatocyte cells. PCR analysis coupled with laser capture micro-dissection (LCM) revealed those cells to contain GFP DNA. Thus, our results indicate that tissue stem cells have multipotential ability, differentiating into hepatocytes when transplanted into an injured liver.  相似文献   

19.
20.
Molecular mechanisms involved in mediating alteration in cell matrix interaction have been examined by studying the changes in the activity of matrix metalloproteinases (MMPs) in CCl4-induced regenerating liver, using zymography and ELISA. Activity of MMPs (72 kD, 92 kD and 130 kD gelatinases) in the rat liver increased progressively during acute injury till the 4th day and then decreased to near normal level after CCl4 administration (0.5 ml/100 g body wt.) on the 6th day. Hepatocyte lysate of injured liver on the 4th day showed significantly higher levels of MMP2 and MMP9 compared to the control. In the culture medium of hepatocytes, the levels of MMP2 and MMP9 increased progressively with the duration of culture, indicating that hepatocytes are the major source of these MMPs in regenerating liver. These results suggest an involvement of MMPs in matrix degradation and remodeling during regeneration after acute liver injury induced by CCl4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号