首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
生境异质性是自然生态系统的基本特征,植物生长的必需资源和环境胁迫因子均存在着复杂的时间和空间异质性。克隆植物是指在自然条件下具有克隆特性的植物,即可通过与母株相连的芽、根茎、分蘖或枝条等繁殖体产生无性繁殖的植物,这些繁殖体一旦定居便可成为潜在的独立个体。克隆植物具有独特的生境适应策略(如形态可塑性、克隆整合、克隆分工、觅食行为、风险分摊等),面对异质性的生境条件,它可以通过调整自身的生理和形态结构来适应异质生境。目前,对于克隆植物在异质生境适应行为的研究已有很多报道,然而系统性的归纳和总结尚有欠缺。综述了克隆植物在不同资源异质生境(光照、养分、水分)和不同胁迫生境(盐碱胁迫、风沙胁迫、重金属胁迫)下独特的适应对策。最后,针对克隆植物对异质生境的适应对策,进行了总结并对未来的重点研究方向提出建议:(1)时间异质性尺度上的考量;(2)异质性生境中生物因子的调控作用;(3)克隆植物入侵机制;(4)克隆植物在生态修复中的应用潜力。  相似文献   

2.
All natural environments are spatially and temporally heterogeneous. Consequently, their ability to provide essential resources for the growth of plants is variable. Modular plant species produce repeated basic structures which, in the case of clonal species, are called ramets. Ramets belonging to the same clone are distributed throughout the environment in space and time, and therefore they may be located in sites which differ in resource-providing quality. The connections between ramets may allow resources to be shared, enabling the clone to behave as a cooperative system. As a result of such physiological integration, ramets can survive in conditions where there is lethal shortage of a resource because they are connected to, and supported by, ramets located in conditions where there is ample supply of the same resource. Physiological integration between connected ramets presents opportunities for heterogeneous environments to be exploited to an extent that is only just becoming apparent. As heterogeneity is ubiquitous in natural environments, it may be expected that plants, as relatively immobile organisms, will have evolved the capacity to cope with it by making appropriate localized morphological and/or physiological plastic responses. Recent studies suggest that such responses not only enable clonal species to cope with environmental heterogeneity, but that under some circumstances they can benefit more from environments which are heterogeneous rather than homogeneous, even when both types of environment contain the same amount of resources. Studies on Glechoma hederacea (Lamiaceae) that illustrate this phenomenon are described.  相似文献   

3.
In nature, essential resources for organisms, such as food for animals and light, water and nutrients for plants, are usually heterogeneously distributed, even at very small scale. As a result, all organisms, particularly plants mostly sessile, have a difficulty in acquiring essential resources from their environments. Animals express various types of foraging behavior to capture heterogeneously distributed essential foods. Clonal growth ( a vegetative reproductive process where by more than one individual of identical genetic composition is formed ) provides clonal plant not only with many "mouths" at different spatial positions, but also with a large spacial movability. As a clonal plant grows in environments characterized by a small-scale resource heterogeneity, its inter ramet connection permits a resource-sharing among the connected tamers. In addition, it may also allow certain ramets to respond locally and non-locally to resousce heterogeneity. This may lead to a division of labor among the connected ramets and a selective placement of ramets in favorable micro-habitats. Together these may enhance exploitation of resource heterogeneity by clonal plants, and in turn greatly contribute to maintenance or improvement of fitness. Such a behavior of clonal plants, expressed in heterogeneous environments, is to a large extent comparable to that of animals. Therefore, it has been considered as foraging behavior in clonal plants. More recently, it has been observed that phenotypic plasticity of clonal plants, which is relevant to foraging behavior, varies among species, types of genet architecture as well as among types of plants habitats. Foraging in clonal plants and its diversity have been receiving increasingly intensive investigations.  相似文献   

4.
Previous lines of investigation assuming potential advantage of clonal integration generally have neglected its plasticity in complex heterogeneous environments. Clonal plants adaptively respond to abiotic heterogeneity (patchy resource distribution) and herbivory‐induced heterogeneity (within‐clone heterogeneity in ramet performance), but to date little is known about how resource heterogeneity and simulated herbivory jointly affect the overall performance of clones. Partial damage within a clone caused by herbivory might create herbivory‐induced heterogeneity in a resource‐homogeneous environment, and might also decrease or increase the extent of heterogeneity under resource‐heterogeneous conditions. We conducted a greenhouse experiment in which target‐ramets of Leymus chinensis segments within homogeneous or heterogeneous nutrient treatments were subject to clipping (0% or 75% shoot removal). In homogeneous environments with high (9:9) nutrient availability, ramet biomass of L. chinensis with intact or severed rhizomes is 0.70 or 0.69 g. Conversely, target‐ramet biomass with intact rhizomes is obviously lower than that of the severed target‐ramets in the homogeneous environments with medium (5:5) and low (1:1) nutrient availability. High resource availability and the presence of herbivory can alleviate negative effects of rhizome connection under homogeneous conditions, by providing copious resource or creating herbivory‐induced heterogeneity respectively. Herbivory tolerance of clonal fragments with connected rhizomes was higher than that of fragments with severed rhizomes under heterogeneous conditions. These findings confirmed the unconditional advantage of clonal integration on reproduction under the combined influence of resource heterogeneity and simulated herbivory. Moreover, our results made clear the synergistically interactive effects of resource heterogeneity and simulated herbivory on costs and benefits of clonal integration. This will undoubtedly advance our understanding on the plasticity of clonal integration under complex environmental conditions.  相似文献   

5.
BACKGROUND AND AIMS: In clonal plants, internode connections allow translocation of photosynthates, water, nutrients and other substances among ramets. Clonal plants form large systems that are likely to experience small-scale spatial heterogeneity. Physiological and morphological responses of Fragaria vesca to small-scale heterogeneity in soil quality were investigated, together with how such heterogeneity influences the placement of ramets. As a result of their own activities plants may modify the suitability of their habitats over time. However, most experiments on habitat selection by clonal plants have not generally considered time as an important variable. In the present study, how the foraging behaviour of clonal plants may change over time was also investigated. METHODS: In a complex of environments with different heterogeneity, plant performance was determined in terms of biomass, ramet production and photosynthetic activity. To identify habitat selection, the number of ramets produced and patch where they rooted were monitored. KEY RESULTS: Parent ramets in heterogeneous environments showed significantly higher maximum and effective quantum yields of photosystem II than parents in homogeneous environments. Parents in heterogeneous environments also showed significantly higher investment in photosynthetic biomass and stolon/total biomass, produced longer stolons, and had higher mean leaf size than parents in homogeneous environments. Total biomass and number of offspring ramets were similar in both environments. However, plants in homogeneous environments showed random allocation of offspring ramets to surrounding patches, whereas plants in heterogeneous environments showed preferential allocation of offspring to higher-quality patches. CONCLUSIONS: The results suggest that F. vesca employs physiological and morphological strategies to enable efficient resource foraging in heterogeneous environments and demonstrate the benefits of physiological integration in terms of photosynthetic efficiency. The findings indicate that short-term responses cannot be directly extrapolated to the longer term principally because preferential colonization of high-quality patches means that these patches eventually show reduced quality. This highlights the importance of considering the time factor in experiments examining responses of clonal plants to heterogeneity.  相似文献   

6.
Plant ecologists have spent considerable effort investigating the physiological mechanisms and ecological consequences of clonal growth in plants. One line of research is concerned with the response of clonal plants to environmental heterogeneity. Several concepts and hypotheses have been formulated so far, suggesting that intra-clonal resource translocation, morphological plasticity on different organizational levels (e.g. leaves, ramets, fragments), and other features of clonal plants may represent potentially adaptive traits enabling stoloniferous and rhizomatous species to cope better with habitat patchiness. Although each of these concepts contributes substantially to our understanding of the ecology of clonal species, it is difficult to combine them into a consistent theoretical framework. This apparent lack of conceptual coherence seems partly be caused by an uncritical use of the term habitat heterogeneity. Researchers have not always acknowledged the fact that heterogeneity may refer to a number of fundamentally different aspects of environmental variability (i.e. scale, contrast, predictability, temporal vs. spatial heterogeneity), and that each of these aspects may, on one hand, allow for the evolution of specific plant responses to heterogeneity and, on the other, severely constrain the viability of potentially adaptive traits. Since adaptive responses are operational only in a narrow range of conditions (delimited by external environmental conditions and constraints internal to plants) it seems imperative to clearly define the context and the limits within which concepts regarding clonal plants' responses to heterogeneity are valid. In this paper an attempt is made to review a number of these concepts and to try and identify the necessary conditions for them to be operational. Special attention is paid (1) to different aspects of environmental heterogeneity and how they may affect clonal plants, and (2) to possible constraints (e.g. sectoriality, perception of environmental signals, morphological plasticity) on plant responses to patchiness.  相似文献   

7.
AIMS: The purpose of this Botanical Briefing is to stimulate reappraisal of root growth, root/shoot partitioning, and analysis of other aspects of plant growth under heterogeneous conditions. SCOPE: Until recently, most knowledge of plant growth was based upon experimental studies carried out under homogeneous conditions. Natural environments are heterogeneous at scales relevant to plants and in forms to which they can respond. Responses to environmental heterogeneity are often localized rather than plant-wide, and not always predictable from traditional optimization arguments or from knowledge of the ontogenetic trends of plants growing under homogeneous conditions. These responses can have substantial impacts, both locally and plant-wide, on patterns of resource allocation, and significant effects on whole-plant growth. Results from recent studies are presented to illustrate responses of plants, plant populations and plant communities to nutritionally heterogeneous conditions. CONCLUSIONS: Environmental heterogeneity is a constant presence in the natural world that significantly influences plant behaviour at a variety of levels of complexity. Failure to understand its effects on plants prevents us from fully exploiting aspects of plant behaviour that are only revealed under patchy conditions. More effort should be invested into analysis of the behaviour of plants under heterogeneous conditions.  相似文献   

8.
Ramets of some clonal plant species alter their internode lengths or their frequency of lateral branching in response to their immediate microenvironment. Such “plant foraging” responses are thought to allow clones to concentrate in favorable portions of their environment. Despite widespread interest among ecologists in plant foraging, few realistic models have been developed to examine conditions under which plant foraging responses are likely to provide clones with ecological benefit. In this paper, we develop spatially explicit, stochastic simulation models to examine consequences of both empirical and hypothetical plant foraging responses. We construct a hierarchical series of models in which we incorporate effects of resource heterogeneity on spacer lengths, angles of growth, and lateral branch production. We also vary the number, size, and arrangement of patches, and the presence or absence of ramet mortality. Simulations based on hypothetical data demonstrated the potential importance of shortening spacer lengths in favorable habitat. In these simulations, ramet crowding increased significantly, implying a potential cost to plant foraging responses whose magnitude is large enough to cause ramets to concentrate in favorable patches. Models calibrated with empirical data suggest that when clonal plants were able to concentrate in favorable habitat, this was usually caused by increased daughter ramet production in the favorable habitat. Variation in clonal growth angles had little impact on the ability of ramets or clones to locate favorable patches, but did increase the ability of clones to remain in favorable patches once found. Alterations in the number and size of patches strongly influenced the effectiveness of the foraging response. The spatial arrangement of patches also was important: clumped distributions of patches decreased the success with which plants located favorable patches, especially at the genet level and when the number of patches was low. Finally, when ramet mortality varied with patch quality, there was an increase in the percentage of ramets located in favorable patches; differential ramet mortality also lessened the impact of other effects, such as the decreased success of clones when patches are clumped. Overall, our models indicate that the effectiveness of plant foraging responses is variable and is likely to depend on a suite of environmental conditions.  相似文献   

9.
Although theory established the necessary conditions for diversification in temporally heterogeneous environments, empirical evidence remains controversial. One possible explanation is the difficulty of designing experiments including the relevant range of temporal grains and the appropriate environmental trade-offs. Here, we experimentally explore the impact of the grain on the diversification of the bacterium Pseudomonas fluorescens SBW25 in a temporally fluctuating environment by including 20 different pairs of environments and four temporal grains. In general, higher levels of diversity were observed at intermediate temporal grains. This resulted in part from the enhanced capacity of disruptive selection to generate negative genotypic correlations in performance at intermediate grains. However, the evolution of reciprocal specialization was an uncommon outcome. Although the temporal heterogeneity is in theory less powerful than the spatial heterogeneity to generate and maintain the diversity, our results show that diversification under temporal heterogeneity is possible provided appropriate environmental grains.  相似文献   

10.
群落中克隆植物的重要性   总被引:26,自引:5,他引:21  
宋明华  董鸣 《生态学报》2002,22(11):1960-1967
综述了群落水平上克隆植物的重要性,克隆植物的生态习性,克隆植物的竞争关系等方面的研究进展,并试图在克隆植物竞争关系的背景下,结合其生境状况,探讨植物克隆性与植物物种多样性的关系。克隆植物的等级系统(基株—分株系统—分株)使其具有克隆性所赋予的多样的生活史、资源利用以及空间占据方式。列举了克隆植物的特性及其在群落中的作用。这些例子表明,克隆性强烈地影响和制约着植物群落的空间格局与竞争关系。然而克隆性也能通过权衡活动性与局部持久性来缓解对物种共存的抑制。克隆植物具有在时空尺度上分株间相互调节的机制,直接体现在群落中小尺度(个体与个体间)与大尺度(种群与种群间)间的相互作用上。丰富了传统的竞争和生态位划分理论,为群落中物种共存提供了合理解释。因此克隆植物在群落中的出现拓宽了群落系统潜在机制的范围。  相似文献   

11.
Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.  相似文献   

12.
水分在自然系统中呈异质性分布。有关水分异质性对克隆植物生长、形态和生理影响的研究已有大量的工作, 但是水分异质性对克隆植物存储能力, 尤其是水分存储能力影响的研究却十分缺乏。该文将两种根茎型克隆植物赖草(Leymus secalinus)和假苇拂子茅(Calamagrostis pseudophragmites)进行水分异质性和同质性实验处理, 探讨水分异质性对克隆植物水分存储能力、生长和形态的影响。在异质性水分处理下, 两种克隆植物的间隔子、枝和根的含水量均显著增加。两种克隆植物对水分异质性分布的适应策略有所不同, 赖草通过降低单个克隆分株的生长、提高芽的数量以应对水分异质性, 而假苇拂子茅通过增强整个分株种群的地下部分(根状茎、根和芽)生长来应对水分资源的异质性分布。水分储存能力的增强可以提高克隆植物适应水分异质性的能力。  相似文献   

13.
王沫竹  董必成  李红丽  于飞海 《生态学报》2016,36(24):8091-8101
自然界中光照和养分因子常存在时空变化,对植物造成选择压力。克隆植物可通过克隆生长和生物量分配的可塑性来适应环境变化。尽管一些研究关注了克隆植物对光照和养分因子的生长响应,但尚未深入全面了解克隆植物对光照和养分资源投资的分配策略。以根茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis)为研究对象,在温室实验中,将其独立分株种植于由2种光照强度(光照和遮阴)和4种养分水平(对照、低养分、中养分和高养分)交叉组成的8种处理组合中,研究了光照和养分对其生长繁殖及资源贮存策略的影响。结果表明,扁秆荆三棱的生长、无性繁殖及资源贮存性状均受到光照强度的显著影响,在遮阴条件下各生长繁殖性状指标被抑制。且构件的数目、长度等特征对养分差异的可塑性响应先于其生物量积累特征。在光照条件下,高养分处理的总生物量、叶片数、总根茎分株数、长根茎分株数、总根茎长、芽长度、芽数量等指标大于其他养分处理,而在遮阴条件下,其在不同养分处理间无显著差异,表明光照条件可影响养分对扁秆荆三棱可塑性的作用,且高营养水平不能补偿由于光照不足而导致的生长能力下降。光照强度显著影响了总根茎、总球茎及大、中、小球茎的生物量分配,遮阴条件下,总生物量减少了对地下部分根茎和球茎的分配,并将有限的生物量优先分配给小球茎。总根茎的生物量分配未对养分发生可塑性反应,而随着养分增加,总球茎分配下降,说明在养分受限的环境中球茎的贮存功能可缓冲资源缺乏对植物生长的影响。在相同条件下,根茎生物量对长根茎的分配显著大于短根茎,以保持较高的繁殖能力;而总球茎对有分株球茎的生物量分配小于无分株球茎,表明扁秆荆三棱总球茎对贮存功能的分配优先于繁殖功能。研究为进一步理解根茎型克隆植物对光强及基质养分环境变化的生态适应提供了依据。  相似文献   

14.
Clonal plants in heterogeneous environments can benefit from habitat selection, giving them the ability to utilize patchily distributed resources efficiently. However, most research is conducted in a resource heterogeneous environment, and the study of heterogeneous environment of non-resource material (copper, cadmium, lead, and so on) is limited. Research into clonal plant growth under heterogeneous toxic conditions could contribute to our understanding of the strategy of the selective establishment pattern. Thus, we examined clonal growth in a heterogeneous lead environment to enhance understanding of habitat selection strategies. The growth indices (stolon-length, ramet number, biomass, and lead-concentrations) of Duchesnea indica were examined under three levels (low, moderate, and high were represented by 0, 50 and 100%) of lead contamination and two degrees of heterogeneity (low and high heterogeneity under moderate contamination) environments in a glasshouse study. Habitat selection strategy was analyzed by clone growth pattern, labor division, and risk-spreading. The clones under the moderate contamination level, especially with high heterogeneity, demonstrated the optimal growth. They expanded their growth-pattern to escape the toxic environment, and rooted more ramets in the unpolluted patches, allocating more aboveground biomass to these areas. Moreover, parent ramets transported their lead in the soil to the offspring. The offspring spread the toxic risk by accumulating lead in their roots and producing more ramets. Optimal growth of clonal plants occurred in environments moderately contaminated with lead, especially under higher heterogeneity, which performed effective survival strategy by expensive growth architecture, aboveground biomass increase and risk-spreading.  相似文献   

15.
The fifth Clonal Plant Workshop entitled 'Clonal plants and environmental heterogeneity – space, time and scale' was held at the University of Wales, Bangor, from the 9th to the 14th September 1997. The workshops began in 1988, when a small group of plant scientists with different backgrounds met in the Netherlands to discuss plant clonality. This meeting was followed by workshops in 1990, 1992 and 1995 in Sweden, the Czech Republic and Hungary, respectively. The purpose of the Bangor meeting was to continue to integrate knowledge from a wide range of biological disciplines to attempt a better understanding of clonal plants in the context of the heterogeneous environments in which they occur. This special issue is a collection of a number of the presentations at the Bangor workshop. The effects of spatial and temporal environmental heterogeneity on individuals, populations and communities are, of course, diverse, and this collection of papers is not intended to provide a synthesis of the ecological consequences of environmental heterogeneity. Rather, this special issue more accurately reflects progress in various areas of clonal plant research including population dynamics of ramets and genets, mathematical modelling and molecular techniques. We wish to thank all participants of the workshop for their contribution and trust that they found the meeting as stimulating and enjoyable as we did. We are indebted to the authors and the many referees for their friendly cooperation and to Plant Ecology for publishing the proceedings. We also gratefully acknowledge the financial support of the following that made the workshop possible: The British Ecological Society, The Tansley Fund of the New Phytologist Trust, The Countryside Council for Wales, The Institute of Terrestrial Ecology (Bangor) and Skye Instruments Ltd, Wales.  相似文献   

16.
    
The fifth Clonal Plant Workshop entitled 'Clonal plants and environmental heterogeneity – space, time and scale' was held at the University of Wales, Bangor, from the 9th to the 14th September 1997. The workshops began in 1988, when a small group of plant scientists with different backgrounds met in the Netherlands to discuss plant clonality. This meeting was followed by workshops in 1990, 1992 and 1995 in Sweden, the Czech Republic and Hungary, respectively. The purpose of the Bangor meeting was to continue to integrate knowledge from a wide range of biological disciplines to attempt a better understanding of clonal plants in the context of the heterogeneous environments in which they occur.This special issue is a collection of a number of the presentations at the Bangor workshop. The effects of spatial and temporal environmental heterogeneity on individuals, populations and communities are, of course, diverse, and this collection of papers is not intended to provide a synthesis of the ecological consequences of environmental heterogeneity. Rather, this special issue more accurately reflects progress in various areas of clonal plant research including population dynamics of ramets and genets, mathematical modelling and molecular techniques.We wish to thank all participants of the workshop for their contribution and trust that they found the meeting as stimulating and enjoyable as we did. We are indebted to the authors and the many referees for their friendly cooperation and to Plant Ecology for publishing the proceedings. We also gratefully acknowledge the financial support of the following that made the workshop possible: The British Ecological Society, The Tansley Fund of the New Phytologist Trust, The Countryside Council for Wales, The Institute of Terrestrial Ecology (Bangor) and Skye Instruments Ltd, Wales.  相似文献   

17.

Background

Clonal plants spread laterally by spacers between their ramets (shoot–root units); these spacers can transport and store resources. While much is known about how clonality promotes plant fitness, we know little about how different clonal plants influence ecosystem functions related to carbon, nutrient and water cycling.

Approach

The response–effect trait framework is used to formulate hypotheses about the impact of clonality on ecosystems. Central to this framework is the degree of correspondence between interspecific variation in clonal ‘response traits’ that promote plant fitness and interspecific variation in ‘effect traits’, which define a plant''s potential effect on ecosystem functions. The main example presented to illustrate this concept concerns clonal traits of vascular plant species that determine their lateral extension patterns. In combination with the different degrees of decomposability of litter derived from their spacers, leaves, roots and stems, these clonal traits should determine associated spatial and temporal patterns in soil organic matter accumulation, nutrient availability and water retention.

Conclusions

This review gives some concrete pointers as to how to implement this new research agenda through a combination of (1) standardized screening of predominant species in ecosystems for clonal response traits and for effect traits related to carbon, nutrient and water cycling; (2) analysing the overlap between variation in these response traits and effect traits across species; (3) linking spatial and temporal patterns of clonal species in the field to those for soil properties related to carbon, nutrient and water stocks and dynamics; and (4) studying the effects of biotic interactions and feedbacks between resource heterogeneity and clonality. Linking these to environmental changes may help us to better understand and predict the role of clonal plants in modulating impacts of climate change and human activities on ecosystem functions.  相似文献   

18.
Clonal integration may be adaptive and enhance the genet performance of clonal plants. Degree of clonal integration may differ between different environments . Here, a container experiment was used to determine how clonal integration affected the performance of the stoloniferous herb Duchesnea indica at two sites with different altitude along the transitional zone between the Qinghai-Tibet plateau and the Sichuan basin of Southwest China. In the experiment, the stolon between partially shaded two ramets experienced severing and intact treatments.We predicted that clonal integration would increase performance of whole clonal fragments and their shaded clonal parts at both sites. In both arctic and alpine environments, clonal plants may form highly integrated plant units (group of ramets).We predicted again that the reduction due to stolon severing in performance of whole clonal fragments and their shaded clonal parts would be greater at the site with high altitude than one with low altitude. The results indicated that the benefit for the shaded clonal parts and whole clonal fragments due to clonal integration was only observed at the site with high altitude. The results suggest that the performance of Duchesnea indica tends to be more responsive to the stolon severing at the site with high altitude than one with low altitude and support the second prediction. In addition, the effects of conditions of the sites and clonal integration on local morphological traits of ramets may be adaptive, five morphological traits of ramet-level (length of petiole, mean stolon internode length, specific petiole weight, specific stolon internode weight and specific leaf area) were investigated. Altogether, the results suggest that clonal integration might help D. indica plants to successfully inhabit the high-altitude habitat of the Qinghai-Tibet plateau of Southwest China, providing new evidences for the notion that clonal integration is an adaptive trait in stressful environments.  相似文献   

19.
土壤养分的空间异质性在自然界普遍存在, 而克隆植物被认为能很好地适应和利用土壤养分异质性。尽管尺度和对比度是异质性的两个重要属性, 但有关土壤养分异质性的尺度和对比度及其交互作用对克隆植物生长和分株分布格局影响的研究仍比较缺乏。在一个温室实验中, 根状茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis) (异名扁秆藨草(Scirpus planiculumis))被种植在由高养分斑块和低养分斑块组成的异质性环境中。实验为两种尺度处理(大斑块和小斑块)和两种对比度处理(高对比度和低对比度)交叉组成的4种处理组合。在每个处理中, 高养分和低养分斑块的总面积相同; 在所有4种处理中, 土壤养分的总量也完全相同。无论在整个克隆(植株)水平, 还是在斑块水平, 尺度、对比度及其交互作用对扁秆荆三棱的生物量、分株数、根状茎长和块茎数的影响均不显著。然而, 在斑块水平, 扁秆荆三棱在高养分斑块中的生物量、分株数、根状茎长和块茎数均显著高于低养分斑块, 而在高养分斑块中相邻分株间的距离(间隔物长)小于低养分斑块, 并且这种效应均不依赖于斑块尺度的大小和对比度的高低。因此, 在土壤养分异质性环境中, 扁秆荆三棱可以通过缩短间隔物长, 并可能通过提高根状茎的分枝强度, 把较多的分株和潜在分株放置在养分条件好的斑块中。这种响应格局体现出克隆植物的觅食行为, 有利于整个克隆对异质性资源的吸收和利用。然而, 该实验中的尺度和对比度对扁秆荆三棱分株的放置格局均没有显著效应。作者推测, 在一个更大的斑块尺度和(或)对比度范围内, 扁秆荆三棱对土壤养分异质性的响应可能不同。因此, 下一步的研究应涉及更广泛的尺度和对比度。  相似文献   

20.
Both habitat heterogeneity and disturbance can profoundly influence ecological systems at many levels of biological and ecological organization. However, the joint influences of heterogeneity and disturbance on temporal variability in communities have received little attention despite the intense homogenizing influence of human activity. I performed a field manipulation of substrate heterogeneity in a small New England stream, and measured changes in benthic macroinvertebrate communities for 100 days—a period that included both a severe drought and a flood. Generally, community variability decreased with increasing substrate heterogeneity. However, within sampling intervals, this relationship tended to fluctuate through time, apparently tracking changes in hydrology. At the beginning of the experiment, community temporal variability clearly decreased along a gradient of increasing substrate heterogeneity—a result consistent with an observational study performed the previous year. During the subsequent weeks, droughts and flooding created exceptionally high variability in both hydrology and benthic macroinvertebrate community structure resulting in the disappearance of this relationship. However, during the last weeks of the experiment when hydrologic conditions were relatively more stable, the negatively sloped relationship between community temporal variability and habitat heterogeneity reemerged and mimicked relationships observed both early in the experiment and in the previous year’s study. High habitat heterogeneity may promote temporal stability through several mechanisms including stabilization of resources and increased refugia from minor disturbances or predation. However, the results of this experiment suggest that severe disturbance events can create large-scale environmental variability that effectively swamps the influence of habitat heterogeneity, illustrating that a thorough understanding of community temporal variability in natural systems will necessarily consider sources of environmental variability at multiple spatial and temporal scales. Handling editor: L. M. Bini  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号