首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundPrevious epidemiological studies have examined the prevalence and risk factors for a variety of parasitic illnesses, including protozoan and soil-transmitted helminth (STH, e.g., hookworms and roundworms) infections. Despite advancements in machine learning for data analysis, the majority of these studies use traditional logistic regression to identify significant risk factors.MethodsIn this study, we used data from a survey of 54 risk factors for intestinal parasitosis in 954 Ethiopian school children. We investigated whether machine learning approaches can supplement traditional logistic regression in identifying intestinal parasite infection risk factors. We used feature selection methods such as InfoGain (IG), ReliefF (ReF), Joint Mutual Information (JMI), and Minimum Redundancy Maximum Relevance (MRMR). Additionally, we predicted children’s parasitic infection status using classifiers such as Logistic Regression (LR), Support Vector Machines (SVM), Random Forests (RF) and XGBoost (XGB), and compared their accuracy and area under the receiver operating characteristic curve (AUROC) scores. For optimal model training, we performed tenfold cross-validation and tuned the classifier hyperparameters. We balanced our dataset using the Synthetic Minority Oversampling (SMOTE) method. Additionally, we used association rule learning to establish a link between risk factors and parasitic infections.Key findingsOur study demonstrated that machine learning could be used in conjunction with logistic regression. Using machine learning, we developed models that accurately predicted four parasitic infections: any parasitic infection at 79.9% accuracy, helminth infection at 84.9%, any STH infection at 95.9%, and protozoan infection at 94.2%. The Random Forests (RF) and Support Vector Machines (SVM) classifiers achieved the highest accuracy when top 20 risk factors were considered using Joint Mutual Information (JMI) or all features were used. The best predictors of infection were socioeconomic, demographic, and hematological characteristics.ConclusionsWe demonstrated that feature selection and association rule learning are useful strategies for detecting risk factors for parasite infection. Additionally, we showed that advanced classifiers might be utilized to predict children’s parasitic infection status. When combined with standard logistic regression models, machine learning techniques can identify novel risk factors and predict infection risk.  相似文献   

2.
The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.  相似文献   

3.
When the standard approach to predict protein function by sequence homology fails, other alternative methods can be used that require only the amino acid sequence for predicting function. One such approach uses machine learning to predict protein function directly from amino acid sequence features. However, there are two issues to consider before successful functional prediction can take place: identifying discriminatory features, and overcoming the challenge of a large imbalance in the training data. We show that by applying feature subset selection followed by undersampling of the majority class, significantly better support vector machine (SVM) classifiers are generated compared with standard machine learning approaches. As well as revealing that the features selected could have the potential to advance our understanding of the relationship between sequence and function, we also show that undersampling to produce fully balanced data significantly improves performance. The best discriminating ability is achieved using SVMs together with feature selection and full undersampling; this approach strongly outperforms other competitive learning algorithms. We conclude that this combined approach can generate powerful machine learning classifiers for predicting protein function directly from sequence.  相似文献   

4.
We develop ways to predict the side chain orientations of residues within a protein structure by using several different statistical machine learning methods. Here side chain orientation of a given residue i is measured by an angle Omega(i) between the vector pointing from the center of the protein structure to the C(i)(alpha) atom and the vector pointing from the C(i)(alpha) atom to the center of its side chain atoms. To predict the Omega(i) angles, we construct statistical models by using several different methods such as general linear regression, a regression tree and bagging, a neural network, and a support vector machine. The root mean square errors for the different models range only from 36.67 to 37.60 degrees and the correlation coefficients are all between 30% and 34%. The performances of different models in the test set are, thus, quite similar, and show the relative predictive power of these models to be significant in comparison with random side chain orientations.  相似文献   

5.
The amount of metagenomic data is growing rapidly while the computational methods for metagenome analysis are still in their infancy. It is important to develop novel statistical learning tools for the prediction of associations between bacterial communities and disease phenotypes and for the detection of differentially abundant features. In this study, we presented a novel statistical learning method for simultaneous association prediction and feature selection with metagenomic samples from two or multiple treatment populations on the basis of count data. We developed a linear programming based support vector machine with and joint penalties for binary and multiclass classifications with metagenomic count data (metalinprog). We evaluated the performance of our method on several real and simulation datasets. The proposed method can simultaneously identify features and predict classes with the metagenomic count data.  相似文献   

6.
Geometric features of the aorta are linked to patient risk of rupture in the clinical decision to electively repair an ascending aortic aneurysm (AsAA). Previous approaches have focused on relationship between intuitive geometric features (e.g., diameter and curvature) and wall stress. This work investigates the feasibility of a machine learning approach to establish the linkages between shape features and FEA-predicted AsAA rupture risk, and it may serve as a faster surrogate for FEA associated with long simulation time and numerical convergence issues. This method consists of four main steps: (1) constructing a statistical shape model (SSM) from clinical 3D CT images of AsAA patients; (2) generating a dataset of representative aneurysm shapes and obtaining FEA-predicted risk scores defined as systolic pressure divided by rupture pressure (rupture is determined by a threshold criterion); (3) establishing relationship between shape features and risk by using classifiers and regressors; and (4) evaluating such relationship in cross-validation. The results show that SSM parameters can be used as strong shape features to make predictions of risk scores consistent with FEA, which lead to an average risk classification accuracy of 95.58% by using support vector machine and an average regression error of 0.0332 by using support vector regression, while intuitive geometric features have relatively weak performance. Compared to FEA, this machine learning approach is magnitudes faster. In our future studies, material properties and inhomogeneous thickness will be incorporated into the models and learning algorithms, which may lead to a practical system for clinical applications.  相似文献   

7.
Epilepsy surgery is effective in reducing both the number and frequency of seizures, particularly in temporal lobe epilepsy (TLE). Nevertheless, a significant proportion of these patients continue suffering seizures after surgery. Here we used a machine learning approach to predict the outcome of epilepsy surgery based on supervised classification data mining taking into account not only the common clinical variables, but also pathological and neuropsychological evaluations. We have generated models capable of predicting whether a patient with TLE secondary to hippocampal sclerosis will fully recover from epilepsy or not. The machine learning analysis revealed that outcome could be predicted with an estimated accuracy of almost 90% using some clinical and neuropsychological features. Importantly, not all the features were needed to perform the prediction; some of them proved to be irrelevant to the prognosis. Personality style was found to be one of the key features to predict the outcome. Although we examined relatively few cases, findings were verified across all data, showing that the machine learning approach described in the present study may be a powerful method. Since neuropsychological assessment of epileptic patients is a standard protocol in the pre-surgical evaluation, we propose to include these specific psychological tests and machine learning tools to improve the selection of candidates for epilepsy surgery.  相似文献   

8.
9.
Abstract

We develop ways to predict the side chain orientations of residues within a protein structure by using several different statistical machine learning methods. Here side chain orientation of a given residue i is measured by an angle Ωi between the vector pointing from the center of the protein structure to the Cα i atom and the vector pointing from the Cα i atom to the center of its side chain atoms. To predict the Ωi angles, we construct statistical models by using several different methods such as general linear regression, a regression tree and bagging, a neural network, and a support vector machine. The root mean square errors for the different models range only from 36.67 to 37.60 degrees and the correlation coefficients are all between 30% and 34%. The performances of different models in the test set are, thus, quite similar, and show the relative predictive power of these models to be significant in comparison with random side chain orientations.  相似文献   

10.
The discovery of regulation relationship of protein interactions is crucial for the mechanism research in signaling network. Bioinformatics methods can be used to accelerate the discovery of regulation relationship between protein interactions, to distinguish the activation relations from inhibition relations. In this paper, we describe a novel method to predict the regulation relations of protein interactions in the signaling network. We detected 4,417 domain pairs that were significantly enriched in the activation or inhibition dataset. Three machine learning methods, logistic regression, support vector machines(SVMs), and naïve bayes, were explored in the classifier models. The prediction power of three different models was evaluated by 5-fold cross-validation and the independent test dataset. The area under the receiver operating characteristic curve for logistic regression, SVM, and naïve bayes models was 0.946, 0.905 and 0.809, respectively. Finally, the logistic regression classifier was applied to the human proteome-wide interaction dataset, and 2,591 interactions were predicted with their regulation relations, with 2,048 in activation and 543 in inhibition. This model based on domains can be used to identify the regulation relations between protein interactions and furthermore reconstruct signaling pathways.  相似文献   

11.
The discovery of novel cancer genes is one of the main goals in cancer research. Bioinformatics methods can be used to accelerate cancer gene discovery, which may help in the understanding of cancer and the development of drug targets. In this paper, we describe a classifier to predict potential cancer genes that we have developed by integrating multiple biological evidence, including protein-protein interaction network properties, and sequence and functional features. We detected 55 features that were significantly different between cancer genes and non-cancer genes. Fourteen cancer-associated features were chosen to train the classifier. Four machine learning methods, logistic regression, support vector machines (SVMs), BayesNet and decision tree, were explored in the classifier models to distinguish cancer genes from non-cancer genes. The prediction power of the different models was evaluated by 5-fold cross-validation. The area under the receiver operating characteristic curve for logistic regression, SVM, Baysnet and J48 tree models was 0.834, 0.740, 0.800 and 0.782, respectively. Finally, the logistic regression classifier with multiple biological features was applied to the genes in the Entrez database, and 1976 cancer gene candidates were identified. We found that the integrated prediction model performed much better than the models based on the individual biological evidence, and the network and functional features had stronger powers than the sequence features in predicting cancer genes.  相似文献   

12.
Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.  相似文献   

13.
Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.  相似文献   

14.
《IRBM》2022,43(5):333-339
1) ObjectivesPreterm birth caused by preterm labor is one of the major health problems in the world. In this article, we present a new framework for dealing with this problem through the processing of electrohysterographic signals (EHG) that are recorded during labor and pregnancy. The objective in this research is to improve the classification between labor and pregnancy contractions by using a new approach that focuses on the connectivity analysis based on graph parameters, representative of uterine synchronization, and comparing neural network and machine learning methods in order to classify between labor and pregnancy.2) Material and methodsafter denoising of the 16 EHG signals recorded from pregnant women abdomen, we applied different connectivity methods to obtain connectivity matrices; then by using the graph theory, we extracted some graph parameters from the connectivity matrices; finally, we tested different neural network and machine learning methods on the features obtained from both graph and connectivity methods in order to classify between labor and pregnancy.3) ResultsThe best results were obtained by using the logistic regression method. We also evidence the power of graph parameters extracted from the connectivity matrices to improve the classification results.4) ConclusionThe use of graph analysis associated with machine learning methods can be a powerful tool to improve labor and pregnancy classification based on the analysis of EHG signals.  相似文献   

15.
On the basis of Bayesian probabilistic inference, Gaussian process (GP) is a powerful machine learning method for nonlinear classification and regression, but has only very limited applications in the new areas of computational vaccinology and immunoinformatics. In the current work, we present a paradigmatic study of using GP regression technique to quantitatively model and predict the binding affinities of over 7000 immunodominant peptide epitopes to six types of human major histocompatibility complex (MHC) proteins. In this procedure, the sequence patterns of diverse peptides are characterized quantitatively and the resulting variables are then correlated with the experimentally measured affinities between different MHC and their peptide ligands, by using a linearity- and nonlinearity-hybrid GP approach. We also make systematical comparisons between the GP and two sophisticated modeling methods as partial least square (PLS) regression and support vector machine (SVM) with respect to their fitting ability, predictive power and generalization capability. The results suggest that GP could be a new and effective tool for the modeling and prediction of MHC-peptide interactions and would be promising in the field of computer-aided vaccine design (CAVD).  相似文献   

16.
In the study of in silico functional genomics, improving the performance of protein function prediction is the ultimate goal for identifying proteins associated with defined cellular functions. The classical prediction approach is to employ pairwise sequence alignments. However this method often faces difficulties when no statistically significant homologous sequences are identified. An alternative way is to predict protein function from sequence-derived features using machine learning. In this case the choice of possible features which can be derived from the sequence is of vital importance to ensure adequate discrimination to predict function. In this paper we have successfully selected biologically significant features for protein function prediction. This was performed using a new feature selection method (FrankSum) that avoids data distribution assumptions, uses a data independent measurement (p-value) within the feature, identifies redundancy between features and uses an appropriate ranking criterion for feature selection. We have shown that classifiers generated from features selected by FrankSum outperforms classifiers generated from full feature sets, randomly selected features and features selected from the Wrapper method. We have also shown the features are concordant across all species and top ranking features are biologically informative. We conclude that feature selection is vital for successful protein function prediction and FrankSum is one of the feature selection methods that can be applied successfully to such a domain.  相似文献   

17.
Traditional bioinformatics methods performed systematic comparison between the halophilic proteins and their non-halophilic homologues, to investigate the features related to hypersaline adaptation. Therefore, proposing some quantitative models to explain the sequence-characteristic relationship of halophilic proteins might shed new light on haloadaptation and help to design new biocatalysts adapt to high salt concentration. Five machine learning algorithm, including three linear and two non-linear methods were used to discriminate halophilic and their non-halophilic counterparts and the prediction accuracy was encouraging. The best prediction reliability for halophilic proteins was achieved by artificial neural network and support vector machine and reached 80 %, for non-halophilic proteins, it was achieved by linear regression and reached 100 %. Besides, the linear models have captured some clues for protein halo-stability. Among them, lower frequency of Ser in halophilic protein has not been report before.  相似文献   

18.
The study on the relationship between trace elements and diseases often need to build a classification/regression model. Furthermore, the accuracy of such a model is of particular importance and directly decides its applicability. The goal of this study is to explore the feasibility of applying boosting, i.e., a new strategy from machine learning, to model the relationship between trace elements and diseases. Two examples are employed to illustrate the technique in the applications of classification and regression, respectively. The first example involves the diagnosis of anorexia according to the concentrations of six elements (i.e. classification task). Decision stump and support vector machine are used as the weak/base algorithm and reference algorithm, respectively. The second example involves the prediction of breast cancer mortality based on the intake of trace elements (i.e. a regression task). In this regard, partial least squares is not only used as the weak/base algorithm, but also the reference algorithm. The results from both examples confirm the potential of boosting in modeling the relationship between trace elements and diseases.  相似文献   

19.

Background

State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau in their predictive performance. These assume a predetermined additive functional form for some sophisticated numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the coefficients.

Results

In this study we show that such a simple functional form is detrimental for the prediction performance of a scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve prediction performance. We investigate the conditions of applying RF under various contexts and find that given sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and measured binding affinities. Incorporating more structural features and training with more samples can both boost RF performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for comparison study.

Conclusions

Machine-learning scoring functions are fundamentally different from classical scoring functions because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction performance. The future availability of more X-ray crystal structures will further widen the performance gap between RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring function development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-291) contains supplementary material, which is available to authorized users.  相似文献   

20.
环境微生物研究中机器学习算法及应用   总被引:1,自引:0,他引:1  
陈鹤  陶晔  毛振镀  邢鹏 《微生物学报》2022,62(12):4646-4662
微生物在环境中无处不在,它们不仅是生物地球化学循环和环境演化的关键参与者,也在环境监测、生态治理和保护中发挥着重要作用。随着高通量技术的发展,大量微生物数据产生,运用机器学习对环境微生物大数据进行建模和分析,在微生物标志物识别、污染物预测和环境质量预测等领域的科学研究和社会应用方面均具有重要意义。机器学习可分为监督学习和无监督学习2大类。在微生物组学研究当中,无监督学习通过聚类、降维等方法高效地学习输入数据的特征,进而对微生物数据进行整合和归类。监督学习运用有特征和标记的微生物数据集训练模型,在面对只有特征没有标记的数据时可以判断出标记,从而实现对新数据的分类、识别和预测。然而,复杂的机器学习算法通常以牺牲可解释性为代价来重点关注模型预测的准确性。机器学习模型通常可以看作预测特定结果的“黑匣子”,即对模型如何得出预测所知甚少。为了将机器学习更多地运用于微生物组学研究、提高我们提取有价值的微生物信息的能力,深入了解机器学习算法、提高模型的可解释性尤为重要。本文主要介绍在环境微生物领域常用的机器学习算法和基于微生物组数据的机器学习模型的构建步骤,包括特征选择、算法选择、模型构建和评估等,并对各种机器学习模型在环境微生物领域的应用进行综述,深入探究微生物组与周围环境之间的关联,探讨提高模型可解释性的方法,并为未来环境监测、环境健康预测提供科学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号