共查询到20条相似文献,搜索用时 15 毫秒
1.
Mette Richner Maj Ulrichsen Siri Lander Elmegaard Ruthe Dieu Lone Tjener Pallesen Christian Bjerggaard Vaegter 《Molecular neurobiology》2014,50(3):945-970
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75NTR and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed. 相似文献
2.
3.
4.
5.
Yoshinori Takemura Shinji Imai Hideto Kojima Miwako Katagi Isamu Yamakawa Toshiyuki Kasahara Hiroshi Urabe Tomoya Terashima Hitoshi Yasuda Lawrence Chan Hiroshi Kimura Yoshitaka Matsusue 《PloS one》2012,7(9)
Brain-derived neurotrophic factor (BDNF) stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs) in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/−) received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT) were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI), and motor nerve conduction velocity (MNCV) simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/− mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/− BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/− mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair. 相似文献
6.
7.
André Luis Bombeiro Rodolfo Thomé Sérgio Luiz Oliveira Nunes Bárbara Monteiro Moreira Liana Verinaud Alexandre Leite Rodrigues de Oliveira 《PloS one》2016,11(8)
Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. 相似文献
8.
9.
目的初步探讨骨髓间充质干细胞诱导为神经细胞,及其移植对大鼠脊髓半横断损伤神经功能恢复和运动的影响。方法贴壁培养法分离培养大鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs),大鼠脊髓匀浆上清诱导第3代向神经细胞分化,经免疫组化鉴定分化后细胞的性质。制备大鼠半横断脊髓损伤模型,脊髓损伤局部注射BrdU标记诱导后的神经细胞。细胞移植5周后观察移植细胞在脊髓内存活分布情况。结果倒置显微镜下可见MSCs呈纺锤形和多角形,有1~2个核仁,经脊髓匀浆上清诱导后,发出数个细长突起,并交织成网,诱导后的细胞表达Nestin,可推测诱导后的细胞为MSCs源神经细胞。5周后移植的MSCs在宿主损伤脊髓内聚集并存活,表达MAP-2、NF、GFAP与对照组比较有统计学意义(P0.05)。大鼠运动功能较移植前有所改善。结论MSCs经脊髓匀浆上清诱导后移植治疗大鼠半横断脊髓损伤可使运动功能得到改善。 相似文献
10.
11.
Paul A. Baldock Nicola J. Lee Frank Driessler Shu Lin Susan Allison Bernhard Stehrer En-Ju D. Lin Lei Zhang Ronald F. Enriquez Iris P. L. Wong Michelle M. McDonald Matthew During Dominique D. Pierroz Katy Slack Yan C. Shi Ernie Yulyaningsih Aygul Aljanova David G. Little Serge L. Ferrari Amanda Sainsbury John A. Eisman Herbert Herzog 《PloS one》2009,4(12)
12.
13.
Somatic recombination of TCR genes in immature thymocytes results in some cells with useful TCR specificities, but also many with useless or potentially self-reactive specificities. Thus thymic selection mechanisms operate to shape the T-cell repertoire. Thymocytes that have a TCR with low affinity for self-peptide–MHC complexes are positively selected to further differentiate and function in adaptive immunity, whereas useless ones die by neglect. Clonal deletion and clonal diversion (Treg differentiation) are the major processes in the thymus that eliminate or control self-reactive T cells. Although these processes are thought to be efficient, they fail to control self-reactivity in all circumstances. Thus, peripheral tolerance processes exist wherein self-reactive T cells become functionally unresponsive (anergy) or are deleted after encountering self-antigens outside of the thymus. Recent advances in mechanistic studies of central and peripheral T-cell tolerance are promoting the development of therapeutic strategies to treat autoimmune disease and cancer and improve transplantation outcome.T cells recognize pathogen fragments in the context of surface MHC molecules on host cells. As such, they have the potential to do enormous damage to healthy tissue when they are not appropriately directed, that is, when they respond to self-antigens as opposed to foreign antigens. T lymphocyte tolerance is particularly important, because it impacts B-cell tolerance as well, through the requirement of T cell help in antibody responses. Thus, failure of T-cell tolerance can lead to many different autoimmune diseases. The tolerance of T cells begins as soon as a T-cell receptor is formed and expressed on the cell surface of a T-cell progenitor in the thymus. Tolerance mechanisms that operate in the thymus before the maturation and circulation of T cells are referred to as “central tolerance.” However, not all antigens that T cells need to be tolerant of are expressed in the thymus, and thus central tolerance mechanisms alone are insufficient. Fortunately, additional tolerance mechanisms exist that restrain the numbers and or function of T cells that are reactive to developmental or food antigens, which are not thymically expressed. These mechanisms act on mature circulating T cells and are referred to as “peripheral tolerance.” 相似文献
14.
15.
Chan PH 《Neurochemical research》2004,29(11):1943-1949
Apoptotic cell death pathways have been implicated in acute brain injuries, including cerebral ischemia, brain trauma, and spinal cord injury, and in chronic neurodegenerative diseases. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and suggest the involvement of mitochondria and the cell survival/death signaling pathways in cell death/survival cascades. Recent studies have implicated mitochondria-dependent apoptosis involving pro- and anti-apoptotic protein binding, the release of cytochrome c and second mitochondria-derived activator of caspase, the activation of downstream caspases-9 and –3, and DNA fragmentation. Reactive oxygen species are known to be significantly generated in the mitochondrial electron transport chain in the dysfunctional mitochondria during reperfusion after ischemia, and are also implicated in the survival signaling pathway that involves phosphatidylinositol-3-kinase (PI3-K), Akt, and downstream signaling molecules, like Bad, 14-3-3, and the proline-rich Akt substrate (PRAS), and their bindings. Further studies of these survival pathways may provide novel therapeutic strategies for clinical stroke.Special issue dedicated to Lawrence F. Eng. 相似文献
16.
17.
Diana D. Villarreal Kihoon Lee Angela Deem Eun Yong Shim Anna Malkova Sang Eun Lee 《PLoS genetics》2012,8(11)
Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called “microhomology,” yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using >15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements. 相似文献
18.
Silver Impregnation of Peripheral and Central Axons 总被引:2,自引:0,他引:2
A silver impregnation method suitable for peripheral and central nervous system axons is described. Essential features are the use of reagent grade chemicals only, a pretreatment solution to ensure optimal impregnation of different organs from different animals and species, and an unvarying procedure. The results are compared to those obtainable with a number of current impregnation methods and with modern immunocytochemical reactions. 相似文献
19.
The immune system is a homeostatic system that contributes to maintain the constancy of the molecular and cellular components
of the organism. Immune cells can detect the intrusion of foreign antigens or alteration of self-components and send information
to the central nervous system (CNS) about this kind of perturbations, acting as a receptor sensorial organ. The brain can
respond to such signals by emitting neuro/endocrine signals capable of affecting immune reactivity. Thus, the immune system,
as other physiologic systems, is under brain control. Under disease conditions, when priorities for survival change, the immune
system can, within defined limits, reset brain-integrated neuro-endocrine mechanisms in order to favour immune processes at
the expenses of other physiologic systems. In addition, some cytokines initially conceived as immune products, such as IL-1
and IL-6, are also produced in the “healthy” brain by glial cells and even by some neurons. These and other cytokines have
the capacity to affect synaptic plasticity acting as mediators of interactions between astrocytes and pre- and post-synaptic
neurons that constitute what is actually defined as a tripartite synapse. Since the production of cytokines in the brain is
affected by peripheral immune and central neural signals, it is conceivable that tripartite synapses can, in turn, serve as
a relay system in immune-CNS communication. 相似文献
20.
Yi Yang Danlin Pang Chenghu Hu Yajie Lv Tao He Yulin An Zhangui Tang Zhihong Deng 《PloS one》2015,10(12)
Exogenously infused mesenchymal stem cells (MSCs) are thought to migrate to injury site through peripheral blood stream and participate in tissue repair. However, whether and how endogenous bone marrow MSCs mobilized to circulating and targeted to tissue injury has raised some controversy, and related studies were restricted by the difficulty of MSCs identifying in vivo. Nestin, a kind of intermediate filament protein initially identified in neuroepithelial stem cells, was recently reported as a credible criteria for MSCs in bone marrow. In this study, we used a green fluorescent protein (GFP) labeled bone marrow replacement model to trace the nestin positive bone marrow derived cells (BMDCs) of skin defected-mice. We found that after skin injured, numbers of nestin+ cells in peripheral blood and bone marrow both increased. A remarkable concentration of nestin+ BMDCs around skin wound was detected, while few of these cells could be observed in uninjured skin or other organs. This recruitment effect could not be promoted by granulocyte colony-stimulating factor (G-CSF), suggests a different mobilization mechanism from ones G-CSF takes effect on hematopoietic cells. Our results proposed nestin+ BMDCs as mobilized candidates in skin injury repair, which provide a new insight of endogenous MSCs therapy. 相似文献