首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature‐dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.  相似文献   

6.
7.
8.
9.
10.
11.
The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively.  相似文献   

12.
Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 act downstream of the BL sensor PHOTOTROPIN1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the AUXIN/INDOLE-3-ACETIC ACID (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with AUXIN RESPONSE FACTOR7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin.  相似文献   

13.
14.
As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication.  相似文献   

15.
16.
A second locus (Lhb1B) encoding Photosystem II Type I chlorophyll a/b-binding (CAB) polypeptides was identified in Arabidopsis thaliana. This locus carries two genes in an inverted orientation. The predicted sequences of the polypeptides encoded by these two genes show substantial divergence in their amino termini relative to each other and to the proteins encoded by the three Lhb1 CAB genes previously characterized [10], but little divergence within the predicted primary structure of the mature protein. DNA probes derived from seven additional types of tomato CAB genes, encoding chlorophyll a/b-binding polypeptides of several antenna systems of the photosynthetic apparatus, were tested against A. thaliana. Each of these hybridized in Southern blots to unique DNA fragment(s), demonstrating the existence of each of these different types of CAB genes in the genome of A. thaliana. The number of genes encoding each CAB type in A. thaliana was estimated to be similar to that of tomato.  相似文献   

17.
Genetic polymorphism is found among the PIF (parotid isoelectric focusing variant) salivary proteins after separation by prolonged isoelectric focusing in pH 3.5–5.2 urea polyacrylamide slab gels subsequently stained for protein. Two PIF proteins are either present (PIF +) or absent (PIF –) from all salivas. The phenotypes are determined by autosomal inheritance of two alleles, PIF + and PIF . Gene frequencies in randomly collected samples show marked racial differences: among 148 whites, PIF + is 0.66 and PIF is 0.34; among 90 blacks, PIF + is 0.35 and PIF is 0.65; among 78 Chinese, PIF + is 0.56 and PIF is 0.44. Studies in 41 families including 129 children support the interpretation of control of PIF by a single autosomal locus. In 8 PIF+ × PIF– matings, there were 8 PIF– (6.34 expected) children. In 33 PIF+ × PIF+ matings, there were 7 PIF– (6.70 expected) children. Linkage studies indicate that PIF is closely linked to the proline-rich protein (PPP) gene complex (e.g., for six families, lod score at =0.00 of PIF/G1 is 3.58). In 107 randomly collected samples from whites, PIF is strongly associated with Db (x 1 2 =20.02; P<0.0001) and Gl (x 1 2 =12.58; P=0.0005) but not with Pr, Ps, Pm, and Pa proteins. These data (probably reflecting genetic disequilibrium) suggest that PIF may be closer to Db and G1 than to other identified loci of the PPP gene complex. The PPP gene complex includes at least seven genes (and probably more) that produce many acidic and basic proline-rich proteins, constituting about two-thirds of parotid salivary proteins that are thought to have important functions at the tooth surfaces.This study was supported by a grant from the National Institutes of Dental Research (DEO 3658-15). Paper No. 2435 of the Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706.  相似文献   

18.
Gene duplication provides resources for novel gene functions. Identification of the amino acids responsible for functional conservation and divergence of duplicated genes will strengthen our understanding of their evolutionary course. Here, we conducted a systemic functional investigation of phosphatidylethanolamine binding proteins (PEBPs) in soybean (Glycine max) and Arabidopsis thaliana. Our results demonstrated that after the ancestral duplication, the lineage of the common ancestor of the FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) subfamilies functionally diverged from the MOTHER OF FT AND TFL1 (MFT) subfamily to activate flowering and repress flowering, respectively. They also underwent further specialization after subsequent duplications. Although the functional divergence increased with duplication age, we observed rapid functional divergence for a few pairs of young duplicates in soybean. Association analysis between amino acids and functional variations identified critical amino acid residues that led to functional differences in PEBP members. Using transgenic analysis, we validated a subset of these differences. We report clear experimental evidence for the functional evolution of the PEBPs in the MFT, FT, and TFL1 subfamilies, which predate the origin of angiosperms. Our results highlight the role of amino acid divergence in driving evolutionary novelty after duplication.  相似文献   

19.
Cryptochrome (CRY) gene family encodes photoreceptors mediating developmental responses to blue light throughout the life of plants. We report here the characterization of CRY gene family in hexaploid wheat. Degenerate PCR amplification of the regions encoding the conserved flavin-binding domain of CRY proteins yielded seven bands, resulting from amplification of CRY1a, CRY1b and CRY2 homologous genes. Assignment of individual amplicons to subgenomes was accomplished by comparing their sequence compositions with those from the ancestor species of wheat. ESTs coding for CRY-DASH like proteins were identified in wheat EST database in GenBank. Southern blot showed that TaCRY1a, TaCRY1b and TaCRY2 are single copy genes. We mapped TaCRY1a and TaCRY2 to chromosomes of homoeologous group 6, TaCRY1b to group 2, and TaCRY-DASH to group 7. Phylogenetic analysis showed that CRY subfamily diversification occurred before the divergence of monocots and dicots. The regulatory and functional changes of CRY members within subfamily are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号