首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon.  相似文献   

2.
Two strains, Rhodoferax sp. P230 and Delftia (Comamonas) acidovorans MCI, have previously been shown to carry activities for the degradation of the two enantiomers of (RS)-2-(2,4-dichlorophenoxy-)propionate (dichlorprop) and (RS)-2-(4-chloro-2-methylphenoxy-)propionate (mecoprop) and, in addition, are capable of degrading phenoxyacetate derivatives 2.4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA). Metabolism of the herbicides is initiated by alpha-ketoglutarate-dependent dioxygenases for both enantiomers of the phenoxypropionate herbicides and for 2,4-D. These activities were constitutively expressed for both enantiomers of dichlorprop in strain MC1 and for the Renantiomer in strain P230. Enzyme activities for the complete degradation of phenoxyacetate and phenoxypropionate herbicides were induced during incubation on either of these herbicides. Strain MC1 has about threefold higher activities for the degradation of dichlorprop and for growth on this substrate (mumax = 0.15 h(-1)) than strain P230; the maximum growth rate on 2,4-D amounts to 0.045 h(-1) with strain MC1. Dichlorprop is utilized faster than mecoprop and the R-enantiomers are cleaved with higher rates than the S-enantiomers. The degradation of the chlorophenolic intermediates seems to proceed via the modified ortho cleavage pathway as indicated by activities of the respective enzymes. The enzymatic results were supported by genetic investigations by which the presence of the genes tfdB (encoding a dichlorophenol hydroxylase), tfdC (encoding a chlorocatechol 1,2-dioxygenase) and tfdD (encoding a chloromuconate cycloisomerase) could be demonstrated in both strains by PCR after application of respective primers. The presence of the tfdA gene (encoding a 2,4-D/alpha-ketoglutarate dioxygenase) was only shown for strain P230 but was lacking in strain MC1. Sequence analysis of the tfd gene fragments revealed high homology to the degradative genes of other proteobacterial strains degrading chloroaromatic compounds. Strain MC1 carries a plasmid of about 120 kb which apparently harbors herbicide degradative genes as concluded from deletion mutants which have lost 2,4-D[phenoxalkanoate]/alpha-ketoglutarate dioxygenase activities for cleavage of the R- and S-enantiomer, and of 2,4-D. For strain P230, no plasmid could be demonstrated; the activity was stably conserved in this strain during growth under nonselective conditions.  相似文献   

3.
Aerobic degradation experiments with the racemic mixtures of mecoprop and dichlorprop revealed that activated sludge collected from the aeration tank of a municipal waste water treatment plant degraded both enantiomers of mecoprop and dichlorprop within 7 days, albeit in an enantioselective manner; the (S) enantiomers were preferentially degraded. Mecoprop, dichlorprop, and 2,4-D were completely metabolized under aerobic conditions, as shown by the 86–98% elimination of dissolved organic carbon. Under anaerobic conditions, the concentration of 2,4-D decreased exponentially with a first-order reaction rate constant of 0.24 per day and without a lag-phase. After an incubation time of 17 days, 2,4-D was completely removed. 2,4-Dichlorophenol was the main metabolite of anaerobic 2,4-D degradation; only traces of 4-chlorophenol were detected. In contrast, the chiral phenoxypropionic acid herbicides mecoprop and dichlorprop persisted under anaerobic conditions during 49 days of incubation.  相似文献   

4.
Nine mycorrhizal fungi and free-living saprophytic microorganisms were tested for their ability to degrade two chlorinated aromatic herbicides at two herbicide concentrations and three nitrogen concentrations. Radiolabelled 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) were used as substrates at concentrations of 1 and 4 mM. After 8 weeks, none of the cultures tested grew at 4 mM 2,4-D. However, when the 2,4-D concentration was reduced to 1 mM, Phanerochaete chrysosporium 1767 had the highest level of 2,4-D mineralization and degradation under all nitrogen conditions. All cultures tested grew at both atrazine concentrations. In all cases, the ericoid mycorrhizal fungus Hymenoscyphus ericae 1318 had the highest level of atrazine carbon incorporated into its tissue. In general, as the nitrogen concentration increased, the total herbicide degradation increased. All of the cultures, except for Rhizopogon vinicolor 7534 and Sclerogaster pacificus 9011, showed increased degradation at 4 mM compared with 1 mM atrazine. The ability to degrade these two herbicides thus appeared to be dependent on the fungus and the herbicide, with no correlation to fungal ecotype (mycorrhizal versus free living).  相似文献   

5.
Delftia acidovorans MC1071 can productively degrade R-2-(2,4-dichlorophenoxy)propionate (R-2,4-DP) but not 2,4-dichlorophenoxyacetate (2,4-D) herbicides. This work demonstrates adaptation of MC1071 to degrade 2,4-D in a model two-dimensional porous medium (referred to here as a micromodel). Adaptation for 2,4-D degradation in the 2 cm-long micromodel occurred within 35 days of exposure to 2,4-D, as documented by substrate removal. The amount of 2,4-D degradation in the adapted cultures in two replicate micromodels (~10 and 20 % over 142 days) was higher than a theoretical maximum (4 %) predicted using published numerical simulation methods, assuming instantaneous biodegradation and a transverse dispersion coefficient obtained for the same pore structure without biomass present. This suggests that the presence of biomass enhances substrate mixing. Additional evidence for adaptation was provided by operation without R-2,4-DP, where degradation of 2,4-D slowly decreased over 20 days, but was restored almost immediately when R-2,4-DP was again provided. Compared to suspended growth systems, the micromodel system retained the ability to degrade 2,4-D longer in the absence of R-2,4-DP, suggesting slower responses and greater resilience to fluctuations in substrates might be expected in the soil environment than in a chemostat.  相似文献   

6.
Plate numbers of bacteria and relative incidence of strains capable of mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in chernozem samples incubated for 14 d with the herbicide (50 ppm) in the presence or absence of glucose (1000 ppm) were compared. Whereas the total number of bacteria increased 1.2-fold in the variant with 2,4-D and 2.4-fold in the variant with glucose and the herbicide, the number of 2,4-D-mineralizing bacteria increased 12.1-fold and 34.2-fold, respectively. In a collection of 96 isolates of soil bacteria substantially more strains capable of degradation of 2,4-D in the presence of glucose were detected as compared with the variant without it, indicating that processes of cometabolic type are involved during the degradation of this herbicide in the soil.  相似文献   

7.
The simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2-methyl-4-chlorophenoxy)propionic acid (mecoprop) was achieved by two mixed cultures in the absence of any additional carbon or energy substrates. Mecoprop was not completely degraded by either of the two cultures, nor did addition of 2,4-D affect the degradation of mecoprop. The cultures completely degraded 2,4-D, and the degradation was uninfluenced by the addition of mecoprop. Nearly complete dechlorination of the mixture of two herbicides was achieved by both cultures, on the basis of the total amount of the two herbicides degraded. During the course of the reaction, however, the expected values of chloride were not met. Cell growth continued after the degradation of the parent substrates ceased. Although the mecoprop degradation did not continue to completion, spectral and growth data indicated that the metabolites which had accumulated during the reaction were degraded upon further incubation.  相似文献   

8.
Uptake, translocation and metabolism of 14C-labelled 4-amino-3,5,6-trichloropicolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) in seedlings of wheat (Triticum aestivum L.) were studied. The uptake of the herbicides through the upper surface of the first leaf was slow but was almost complete after nine days. Picloram was absorbed faster than 2,4-D. Picloram was also translocated into the stem and the untreated leaves to a greater extent than 2,4-D. Only small fractions of the activity were recovered from the roots and from the nutrient solution. Picloram and 2,4-D formed water-soluble conjugates in the tissues. These conjugates were very labile and hydrolyzed under release of the unchanged herbicides. The isotope from 2,4-D was also incorporated in an insoluble fraction, containing cell walls and proteins. Also from this fraction biologically active 2,4-D could be released by hydrolysis. The formation of the complexes was partly prevented by cycloheximide. It is suggested that herbicide detoxification through complex formation is of importance for the relatively low sensitivity of wheat to auxin herbicides.  相似文献   

9.
A gram-negative prototrophic bacterial species, strain MC1, was isolated from the vicinity of herbicide-contaminated building rubble and identified by 16S rDNA sequence analysis, its physiological properties, GC content, and fatty acid composition as Comamonas acidovorans. This strain displays activity for the productive degradation of the two enantiomers of dichlorprop [(RS)-2-(2,4-dichlorophenoxy-)propionate; (RS)-2,4-DP] and mecoprop [(RS)-2-(4-chloro-2-methyl-) phenoxypropionate; (RS)-MCPP] in addition phenoxyacetate herbicides, i.e. 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), and various chlorophenols were utilized. Rates amounted to 1.2 mmoles/h g dry mass (2,4-D) and 2.7 mmoles/h g dry mass [(RS)-2,4-DP]. Degradation of (RS)-2,4-DP was not inhibited up to concentrations of 500 mg/l, nor of 2,4-D up to 200 mg/l. The optimum pH value of (RS)-2,4-DP degradation was around 8. The application of respective primers for PCR amplification revealed the presence of tfdB and tfdC genes.  相似文献   

10.
A pilot field study was conducted to assess the impact of bioaugmentation with two plasmid pJP4-bearing microorganisms: the natural host, Ralstonia eutropha JMP134, and a laboratory-generated strain amenable to donor counterselection, Escherichia coli D11. The R. eutropha strain contained chromosomal genes necessary for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D), while the E. coli strain did not. The soil system was contaminated with 2,4-D alone or was cocontaminated with 2,4-D and Cd. Plasmid transfer to indigenous populations, plasmid persistence in soil, and degradation of 2,4-D were monitored over a 63-day period in the bioreactors. To assess the impact of contaminant reexposure, aliquots of bioreactor soil were reamended with additional 2,4-D. Both introduced donors remained culturable and transferred plasmid pJP4 to indigenous recipients, although to different extents. Isolated transconjugants were members of the Burkholderia and Ralstonia genera, suggesting multiple, if not successive, plasmid transfers. Upon a second exposure to 2,4-D, enhanced degradation was observed for all treatments, suggesting microbial adaptation to 2,4-D. Upon reexposure, degradation was most rapid for the E. coli D11-inoculated treatments. Cd did not significantly impact 2,4-D degradation or transconjugant formation. This study demonstrated that the choice of donor microorganism might be a key factor to consider for bioaugmentation efforts. In addition, the establishment of an array of stable indigenous plasmid hosts at sites with potential for reexposure or long-term contamination may be particularly useful.  相似文献   

11.
High-molecular-weight, anionic polyacrylamide (PAM) is added to irrigation water to reduce soil erosion during furrow irrigation of crops. The chemical nature of PAM, together with the observation that the polymer can be biotransformed by soil bacteria, led us to question the impact of PAM treatment on the fate of coapplied agrochemicals. The herbicides, atrazine (nonionic) and 2,4-D (anionic), were tested for pesticide sorption, desorption, and degradation in PAM-treated and untreated soils. Sorption of atrazine and 2,4-D in soil was unaffected by PAMtreatment, as was atrazine desorption. However, 2,4-D desorbedmore readily from the PAM-treated soil than from untreated soil. With respect to pesticide degradation, mineralization of the 2,4-D aromatic ring was not impacted by PAM treatment, but decarboxylation of the 2,4-D carboxylic acid side chain was significantly reduced in the PAM-treated soil. Limited mineralization (7 to 10%) of atrazine was observed in both soils. However, in PAM-treated soils atrazine conversion to 14CO2 and bound residue components was significantly reduced, and there was an increase in the level of methanol extractable metabolites. These results may indicate that PAM application can alter the environmental fate of some pesticides in soils, especially under the high dose treatment conditions examined in this study.  相似文献   

12.
13.
The development of model plant-microbial associations between Gram negative soil microbes capable of degrading phenoxyacetate herbicides, such as 2,4-D and 2,4-D methyl ester, and the crops canola and wheat was described. Both an Acinetobacter baumannii pJP4 transconjugant and Alcaligenes eutrophus JMP 134 colonised non-parasitically on the roots of sterilised seedlings in a hydroponic system. Laser scanning confocal microscopy has shown that colonisation occurred both on the root surface and deeper inside the mucilage layer or inside some surface root cells. When 2,4-D was added to the hydroponic medium supporting the growth of those seedlings colonised by 2,4-D degrading bacteria, the gas chromatographic analysis showed a rapid decrease in the concentration of this herbicide. These bacteria colonising the root system were shown to be responsible for the degradation of 2,4-D. Plants inoculated with the 2,4-D degrading microbes were subsequently found to be less susceptible to damage by the herbicide in such hydroponic systems.  相似文献   

14.
Comamonas acidovorans MC1, which is capable of degrading the chiral phenoxypropionate herbicides 2-(2,4-dichlorophenoxy)propionate [dichlorprop, (RS)-2,4-DP] and 2-(4-chloro-2-methylphenoxy)propionate [mecoprop, (RS)-MCPP] and of degrading the phenoxyacetate herbicides 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), was investigated with respect to the enzymatic basis of this broad substrate specificity. The initial steps of the degradation pathway of (RS)-2,4-DP and 2,4-D were studied. By applying either ion exchange chromatography or hydrophobic interaction chromatography it was possible to separate two enzyme fractions with etherolytic activity, which exhibited pronounced substrate specificity. One enzyme fraction was highly specific for the degradation of the R-enantiomer of 2,4-DP and did not essentially attack the S-configuration. The other enzyme fraction showed pronounced activity toward the cleavage of the S-enantiomer and additionally utilized 2,4-D with almost equal velocity; (R)-2,4-DP was even cleaved at a low rate by this enzyme. These results confirm the existence of phenoxyalkanoatedegrading enzymes with enantiospecific properties in strain MC1.  相似文献   

15.
Microbial mats possibly possess degradation capacities for haloorganic pollutants because of their wide range of different functional groups of microorganisms combined with extreme diurnal changes in pH, oxygen, and sulfide gradients. In this study, 20 mg/l of the chlorinated herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was applied to a pristine hypersaline cyanobacterial mat from Guerrero Negro, Mexico, under a light regime of 12 h dark/12 h light (600 mol photons/m2s). The loss of 2,4-D was followed by chemical GC analysis; functional changes within the mat were determined with microelectrodes for oxygen, photosynthesis, pH, and sulfide. The depletion of 2,4-D due to photooxidation or sorption processes was checked in control experiments. Within 13 days, the light/dark incubated mats degraded 97% of the herbicide, while in permanent darkness only 35% were degraded. Adsorption of 2,4-D to the mat material, agar, or glass walls was negligible (4.6%), whereas 21% of the herbicide was degraded photochemically. The 2,4-D removal rate in the light/dark incubations was comparable to values reported for soils. The phototrophic community of the mat was permanently inhibited by the 2,4-D addition by 17% on average. The sulfate reduction in the entire mat and the respiration in the photic zone were inhibited more strongly but returned to original levels. Since at the end of the experiment the photosynthetic and respiratory activity of the mats were almost as high as in the beginning and 2,4-D almost completely disappeared, we conclude that the examined mats represent a robust and effective system for the degradation of the herbicide where probably the aerobic heterotrophic population is a major player in the degradation process.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

16.
An Alcaligenes denitrificans strain able to degrade (R)-2-(2-methyl-4-chlorophenoxy)propionic acid [(R)-MCPP, mecoprop] was assessed for its ability to utilise a range of chlorophenoxyalkanoic acid herbicides in single, binary, tertiary and quaternary combinations in batch culture. Degradation rates were rapid with single growth substrates; complete degradation occurred within 29 h for 2,4-dichlorophenoxyacetic acid (2,4-D), 43 h for 4-chloro-2-methylphenoxyacetic acid (MCPA) and 50 h for (R)-MCPP, respectively. After 20 h, the degradation of (RS)-2-(2,4-dichlorophenoxy)propionic acid [(RS)-2,4-DP] had ceased, with only the (R)-enantiomer being degraded. In binary combination, 2,4-D and MCPP degraded within 55 h. Degradation rates decreased when herbicides were added in tertiary and quaternary combinations. Thus, at the whole cell level, catalysis of closely related herbicides is likely to be facilitated by diverse enzymatic activity in A. denitrificans. Journal of Industrial Microbiology & Biotechnology (2000) 25, 255–259. Received 16 April 2000/ Accepted in revised form 07 August 2000  相似文献   

17.
Phenoxyalkanoic acids are a widely used class of herbicides. This work employed high-resolution 13C NMR to study the structural changes induced by humic substances and horseradish perodixase on 2,4-dichorophenoxyacetic acid (2,4-D) 13C-labelled in the side chain. NMR spectra showed that humic substances chemically catalyze abiotic splitting of [13C]2,4-D into 2,4-dichlorophenol and [13C]acetic acid at pH 7 but not at pH 4.7. Peroxidase did not catalyze the oxidative degradation of [13C]2,4-D at any pH tested and inhibited the effect of humic substances. Catalytic degradation by humic substances was attributed to free-radical reactions enhanced by the stereochemical contribution of large conformational structures formed by heterogeneous humic molecules at neutral pHs. Inhibition of 2,4-D degradation when humic substances were combined with peroxidase was explained by modification of both chemical and conformational humic structure due to peroxidase-promoted oxidative cross-coupling among humic molecules. Our findings show for the first time that the abiotic degradation of 2,4-D is catalyzed by dissolved humic substances at neutral pH. Journal of Industrial Microbiology & Biotechnology (2001) 26, 70–76. Received 09 February 2000/ Accepted in revised form 22 May 2000  相似文献   

18.
Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively. These intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdB(I) and tfdB(II) genes to produce the respective chlorocatechols. We studied the specific contribution of each of the TfdB enzymes to the 2,4-D/MCPA degradation pathway. To accomplish this, the tfdB(I) and tfdB(II) genes were independently inactivated, and growth on each chlorophenoxyacetate and total chlorophenol hydroxylase activity were measured for the mutant strains. The phenotype of these mutants shows that both TfdB enzymes are used for growth on 2,4-D or MCPA but that TfdB(I) contributes to a significantly higher extent than TfdB(II). Both enzymes showed similar specificity profiles, with 2,4-DCP, MCP, and 4-chlorophenol being the best substrates. An accumulation of chlorophenol was found to inhibit chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhanced the toxic effect of 2,4-DCP on C. necator cells. Furthermore, increased chlorophenol production by overexpression of TfdA also had a negative effect on 2,4-D degradation by C. necator JMP134 and by a different host, Burkholderia xenovorans LB400, harboring plasmid pJP4. The results of this work indicate that codification and expression of the two tfdB genes in pJP4 are important to avoid toxic accumulations of chlorophenols during phenoxyacetic acid degradation and that a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds.  相似文献   

19.
Although it has long been recognized that water deficit in plants reduces photosystem (PS) II mRNAs and proteins, the detailed mechanisms behind this have not been thoroughly elucidated. In the present study, effects of water stress in barley leaves on degradation of major PSII mRNA and dissociation and migration of PSII proteins were investigated. The results indicated that (1) the steady-state levels of major PSII mRNAs and proteins declined with increasing water stress, as a consequence of increased degradation; under severe water stress, the half-lives of D1 and D2 proteins decreased from 12–14 h to 7–8 h and the half-lives of psbA and psbD mRNA decreased from above 16 to 6–10 h; (2) monomerization of PSII were increased during water stress. Severe water stress accelerated turnover of PSII and inhibited PSII activities.  相似文献   

20.
The effects of the herbicides 1,1'-dimethyl-4,4'-bipyridylium dichloride (paraquat), 3,6-dichloro-2-metoxybenzoic acid (dicamba) and 2,4-dichlorophenoxyacetic acid (2,4-D) on cell growth of non-green potato tuber calli are described. We attempted to relate the effects with toxicity, in particular the enzymes committed to the cellular antioxidant system. Cell cultures were exposed to the herbicides for a period of 4 weeks. Cellular integrity on the basis of fluorescein release was strongly affected by 2,4-D, followed by dicamba, and was not affected by paraquat. However, the three herbicides decreased the energy charge, with paraquat and 2,4-D being very efficient. Paraquat induced catalase (CAT) activity at low concentrations (1muM), whereas at higher concentrations, inhibition was observed. Dicamba and 2,4-D stimulated CAT as a function of concentration. Superoxide dismutase (SOD) activity was strongly stimulated by paraquat, whereas dicamba and 2,4-D were efficient only at higher concentrations. Glutathione reductase (GR) activity was induced by all the herbicides, suggesting that glutathione and glutathione-dependent enzymes are putatively involved in the detoxification of these herbicides. Paraquat slightly inhibited glutathione S-transferase (GST), whereas 2,4-D and dicamba promoted significant activation. These results indicate that the detoxifying mechanisms for 2,4-D and dicamba may be different from the mechanisms of paraquat detoxification. However, the main cause of cell death induced by paraquat and 2,4-D is putatively related with the cell energy charge decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号