共查询到20条相似文献,搜索用时 0 毫秒
1.
Lorena del Rocío Ibarra-Reynoso Liudmila Pisarchyk Elva Leticia Pérez-Luque Ma. Eugenia Garay-Sevilla Juan Manuel Malacara 《PloS one》2014,9(11)
Background
Insulin resistance may be assessed as whole body or hepatic.Objective
To study factors associated with both types of insulin resistance.Methods
Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound.Results
The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother''s BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver.Conclusion
In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. 相似文献2.
Hepatic Circadian-Clock System Altered by Insulin Resistance,Diabetes and Insulin Sensitizer in Mice
Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways. 相似文献
3.
Insulin promotes hepatic apolipoprotein B100 (apoB100) degradation, whereas insulin resistance is a major cause of hepatic apoB100/triglyceride overproduction in type 2 diabetes. The cellular trafficking receptor sortilin 1 (Sort1) was recently identified to transport apoB100 to the lysosome for degradation in the liver and thus regulate plasma cholesterol and triglyceride levels. Genetic variation of SORT1 was strongly associated with cardiovascular disease risk in humans. The major goal of this study is to investigate the effect and molecular mechanism of insulin regulation of Sort1. Results showed that insulin induced Sort1 protein, but not mRNA, in AML12 cells. Treatment of PI3K or AKT inhibitors decreased Sort1 protein, whereas expression of constitutively active AKT induced Sort1 protein in AML12 cells. Consistently, hepatic Sort1 was down-regulated in diabetic mice, which was partially restored after the administration of the insulin sensitizer metformin. LC-MS/MS analysis further revealed that serine phosphorylation of Sort1 protein was required for insulin induction of Sort1 in a casein kinase 2-dependent manner and that inhibition of PI3K signaling or prevention of Sort1 phosphorylation accelerated proteasome-dependent Sort1 degradation. Administration of a PI3K inhibitor to mice decreased hepatic Sort1 protein and increased plasma cholesterol and triglyceride levels. Adenovirus-mediated overexpression of Sort1 in the liver prevented PI3K inhibitor-induced Sort1 down-regulation and decreased plasma triglyceride but had no effect on plasma cholesterol in mice. This study identified Sort1 as a novel target of insulin signaling and suggests that Sort1 may play a role in altered hepatic apoB100 metabolism in insulin-resistant conditions. 相似文献
4.
5.
6.
Zhigang Liu Ishan Y. Patil Tianyi Jiang Harsh Sancheti John P. Walsh Bangyan L. Stiles Fei Yin Enrique Cadenas 《PloS one》2015,10(5)
High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts profoundly on brain activity, i.e., synaptic plasticity. 相似文献
7.
Chronic growth hormone (GH) therapy has been shown to cause insulin resistance, but the mechanism remains unknown. PTEN, a tumor suppressor gene, is a major negative regulator of insulin signaling. In this study, we explored the effect of chronic GH on insulin signaling in the context of PTEN function. Balb/c healthy mice were given recombinant human or bovine GH intraperitoneally for 3 weeks. We found that phosphorylation of Akt was significantly decreased in chronic GH group and the expression of PTEN was significantly increased. We further examined this effect in the streptozotocin-induced Type I diabetic mouse model, in which endogenous insulin secretion was disrupted. Insulin/PI3K/Akt signaling was impaired. However, different from the observation in healthy mice, the expression of PTEN did not increase. Similarly, PTEN expression did not significantly increase in chronic GH-treated mice with hypoinsulinemia induced by prolonged fasting. We conducted in-vitro experiments in HepG2 cells to validate our in-vivo findings. Long-term exposure to GH caused similar resistance of insulin/PI3K/Akt signaling in HepG2 cells; and over-expression of PTEN enhanced the impairment of insulin signaling. On the other hand, disabling the PTEN gene by transfecting the mutant PTEN construct C124S or siPTEN, disrupted the chronic GH induced insulin resistance. Our data demonstrate that PTEN plays an important role in chronic-GH-induced insulin resistance. These findings may have implication in other pathological insulin resistance. 相似文献
8.
9.
Jiali Wang Baoshan Liu Hui Han Qiuhuan Yuan Mengyang Xue Feng Xu Yuguo Chen 《Molecular medicine (Cambridge, Mass.)》2015,21(1):68-76
Although hyperglycemia is common in patients with acute myocardial infarction (MI), the underlying mechanisms are largely unknown. Insulin signaling plays a key role in the regulation of glucose homeostasis. In this study, we test the hypothesis that rapid alteration of insulin signaling pathways could be a potential contributor to acute hyperglycemia after MI. Male rats were used to produce MI by ligation of the left anterior descending coronary artery. Plasma glucose and insulin levels were significantly higher in MI rats than those in controls. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) was reduced significantly in the liver tissue of MI rats compared with controls, followed by decreased attachment of phosphatidylinositol 3-kinase (PI3K) p85 subunit with IRS1 and Akt phosphorylation. However, insulin-stimulated signaling was not altered significantly in skeletal muscle after MI. The relative mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase were slightly higher in the liver tissue of MI rats than those in controls. Rosiglitazone (ROSI) markedly restored hepatic insulin signaling, inhibited gluconeogenesis and reduced plasma glucose levels in MI rats. Insulin resistance develops rapidly in liver but not skeletal muscle after MI, which contributes to acute hyperglycemia. Therapy aimed at potentiating hepatic insulin signaling may be beneficial for MI-induced hyperglycemia. 相似文献
10.
11.
Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer’s disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer’s disease. In addition, impaired insulin signaling in the Alzheimer’s disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis. 相似文献
12.
Gwendoline Deslyper Thomas J. Colgan Andrew J. R. Cooper Celia V. Holland James C. Carolan 《PLoS neglected tropical diseases》2016,10(8)
The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode’s ability to successfully sustain a parasitic association with its resistant host. Under infection, both strains had increased abundances in proteins associated with the oxidative phosphorylation pathway, as well as the tricarboxylic acid cycle, with respect to their controls, indicating a general stress response to Ascaris infection. Despite the early stage of infection, some immune-associated proteins were identified to be differentially abundant, providing a novel insight into the host response to Ascaris. In general, the susceptible C57BL/6J mice displayed higher abundances in immune-associated proteins, most likely signifying a more active nematode cohort with respect to their CBA/Ca counterparts. The complement component C8a and S100 proteins, S100a8 and S100a9, were highly differentially abundant in both infected strains, signifying a potential innate immune response and the importance of the complement pathway in defence against macroparasite infection. In addition, the signatures of an early adaptive immune response were observed through the presence of proteins, such as plastin-2 and dipeptidyl peptidase 1. A marked decrease in proteins associated with translation was also observed in both C57BL/6J and CBA/Ca mice under infection, indicative of either a general response to Ascaris or a modulatory effect by the nematode itself. Our research provides novel insights into the in vivo host-Ascaris relationship on the molecular level and provides new research perspectives in the development of Ascaris control and treatment strategies. 相似文献
13.
14.
Vanessa Deveaux Thomas Cadoudal Yasukatsu Ichigotani Fatima Teixeira-Clerc Alexandre Louvet Sylvie Manin Jeanne Tran-Van Nhieu Marie Pierre Belot Andreas Zimmer Patrick Even Patrice D. Cani Claude Knauf Remy Burcelin Adeline Bertola Yannick Le Marchand-Brustel Philippe Gual Ariane Mallat Sophie Lotersztajn 《PloS one》2009,4(6)
Background
Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver.Methodology
Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 −/−).Principal Findings
In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 −/− mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 −/− mice.Conclusion/Significance
These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders. 相似文献15.
Hong Soon Kang Grace Liao Laura M. DeGraff Kevin Gerrish Carl D. Bortner Stavros Garantziotis Anton M. Jetten 《PloS one》2013,8(3)
CD44 is a multifunctional membrane receptor implicated in the regulation of several biological processes, including inflammation. CD44 expression is elevated in liver and white adipose tissue (WAT) during obesity suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we examined the effect of the loss of CD44 expression on the development of various features of metabolic syndrome using CD44 null mice. Our study demonstrates that CD44-deficient mice (CD44KO) exhibit a significantly reduced susceptibility to the development of high fat-diet (HFD)-induced hepatic steatosis, WAT-associated inflammation, and insulin resistance. The decreased expression of genes involved in fatty acid synthesis and transport (Fasn and Cd36), de novo triglyceride synthesis (Mogat1), and triglyceride accumulation (Cidea, Cidec) appears in part responsible for the reduced hepatic lipid accumulation in CD44KO(HFD) mice. In addition, the expression of various inflammatory and cell matrix genes, including several chemokines and its receptors, osteopontin, and several matrix metalloproteinases and collagen genes was greatly diminished in CD44KO(HFD) liver consistent with reduced inflammation and fibrogenesis. In contrast, lipid accumulation was significantly increased in CD44KO(HFD) WAT, whereas inflammation as indicated by the reduced infiltration of macrophages and expression of macrophage marker genes, was significantly diminished in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. CD44KO(HFD) mice remained considerably more insulin sensitive and glucose tolerant than WT(HFD) mice and exhibited lower blood insulin levels. Our study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome and may provide a new therapeutic target in the management of insulin resistance. 相似文献
16.
Pyruvate dehydrogenase kinases (PDK1-4) play a critical role in the inhibition of the mitochondrial pyruvate dehydrogenase complex especially when blood glucose levels are low and pyruvate can be conserved for gluconeogenesis. Under diabetic conditions, the Pdk genes, particularly Pdk4, are often induced, and the elevation of the Pdk4 gene expression has been implicated in the increased gluconeogenesis in the liver and the decreased glucose utilization in the peripheral tissues. However, there is no direct evidence yet to show to what extent that the dysregulation of hepatic Pdk genes attributes to hyperglycemia and insulin resistance in vivo. To address this question, we crossed Pdk2 or Pdk4 null mice with a diabetic model that is deficient in hepatic insulin receptor substrates 1 and 2 (Irs1/2). Metabolic analyses reveal that deletion of the Pdk4 gene had better improvement in hyperglycemia and glucose tolerance than knockout of the Pdk2 gene whereas the Pdk2 gene deletion showed better insulin tolerance as compared to the Pdk4 gene inactivation on the Irs1/2 knockout genetic background. To examine the specific hepatic effects of Pdks on diabetes, we also knocked down the Pdk2 or Pdk4 gene using specific shRNAs. The data also indicate that the Pdk4 gene knockdown led to better glucose tolerance than the Pdk2 gene knockdown. In conclusion, our data suggest that hepatic Pdk4 may be critically involved in the pathogenesis of diabetes. 相似文献
17.
18.
Sabine Kahl Klaus Stra?burger Bettina Nowotny Roshan Livingstone Birgit Klüppelholz Kathrin Ke?el Jong-Hee Hwang Guido Giani Barbara Hoffmann Giovanni Pacini Amalia Gastaldelli Michael Roden 《PloS one》2014,9(4)
Context
Hepatic steatosis, defined as increased hepatocellular lipid content (HCL), associates with visceral obesity and glucose intolerance. As exact HCL quantification by 1H-magnetic resonance spectroscopy (1H-MRS) is not generally available, various clinical indices are increasingly used to predict steatosis.Objective
The purpose of this study was to test the accuracy of NAFLD liver fat score (NAFLD-LFS), hepatic steatosis index (HSI) and fatty liver index (FLI) against 1H-MRS and their relationships with insulin sensitivity and secretion.Design, Setting and Participants
Ninety-two non-diabetic, predominantly non-obese humans underwent clinical examination, 1H-MRS and an oral glucose tolerance test (OGTT) to calculate insulin sensitivity and β-cell function. Accuracy of indices was assessed from the area under the receiver operating characteristic curve (AROC).Results
Median HCL was 2.49% (0.62;4.23) and correlated with parameters of glycemia across all subjects. NAFLD-LFS, FLI and HSI yielded AROCs of 0.70, 0.72, and 0.79, respectively, and related positively to HCL, insulin resistance, fasting and post-load β-cell function normalized for insulin resistance. Upon adjustment for age, sex and HCL, regression analysis revealed that NAFLD-LFS, FLI and HSI still independently associated with both insulin sensitivity and β-cell function.Conclusion
The tested indices offer modest efficacy to detect steatosis and cannot substitute for fat quantification by 1H-MRS. However, all indices might serve as surrogate parameters for liver fat content and also as rough clinical estimates of abnormal insulin sensitivity and secretion. Further validation in larger collectives such as epidemiological studies is needed. 相似文献19.
Karolina Konstantynowicz-Nowicka Ewa Harasim Marcin Baranowski Adrian Chabowski 《PloS one》2015,10(1)
Aim
There are few and contradictory data on the role of excessive accumulation of intracellular sphingolipids, particularly ceramides, in the development of hepatic insulin resistance. In our study we assessed accumulated sphingolipid fractions and clarify the mechanisms of hepatic insulin resistance development as well as involvement of fatty acid and ceramide transporters in this process.Methods
In culture of primary rat hepatocytes, exposed to high concentration of palmitic acid (0.75mM) during short and prolonged incubation, high performance liquid chromatography was used to assess intra- and extracellular sphingolipid fractions content. Degree of palmitate-induced insulin resistance was estimated by measuring changes in phosphorylation of insulin pathway proteins by western blotting as well as changes in expression of different type of transporters.Results
In our study short and prolonged exposure of primary hepatocytes to palmitic acid resulted in increased intracellular accumulation of ceramide which inhibited insulin signaling pathway. We observed a significant increase in the expression of fatty-acid transport protein (FATP2) and ceramide transfer protein (CERT) what is consistent with enhanced intracellular ceramide content. The content of extracellular ceramide was increased nearly threefold after short and twofold after long incubation period. Expression of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter (ABCA1) was increased significantly mainly after short palmitate incubation.Conclusion
Our data showed that increase in intarcellular ceramide content contributes to the development of hepatic insulin resistance. We suggest pivotal role of transporters in facilitating fatty acid influx (FATP2), accumulation of ceramides (CERT) and export to the media (MTP and ABCA1). 相似文献20.
Samuele De Minicis Laura Agostinelli Chiara Rychlicki Gian Pio Sorice Stefania Saccomanno Cinzia Candelaresi Andrea Giaccari Luciano Trozzi Irene Pierantonelli Eleonora Mingarelli Marco Marzioni Giovanna Muscogiuri Melania Gaggini Antonio Benedetti Amalia Gastaldelli Maria Guido Gianluca Svegliati-Baroni 《PloS one》2014,9(5)
NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. Aim: we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. Methods: mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. Results: CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1–3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. Conclusions: the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD. 相似文献