首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Cyclic GMP (cGMP)-dependent protein kinase (PKG) has a limited substrate specificity, and only cerebellar G-substrate has been demonstrated in brain. In view of the physiological importance of cGMP and PKG in the nervous system, it is important to identify endogenous PKG substrates in rat brain. We devised a combination of ion-exchange and hydrophobic chromatographies to identify potential PKG substrates. Extracts from cytosol, peripheral membrane proteins, or a fraction enriched in Ca2+-sensitive lipid-binding proteins were partly purified and phosphorylated with purified PKG. Using whole extracts only a single specific PKG substrate—P34—was found. However, after chromatography we detected >40 distinct proteins that were phosphorylated by PKG to a much greater extent than by cyclic AMP-dependent protein kinase or protein kinase C. Four PKG substrates—P140, P65, P32, and P18—were detected in the cytosol. Six PKG substrates—P130, P85 (doublet), P58, P54, and P38—were enriched from the Ca2+-sensitive lipid-binding protein fraction. In peripheral membrane fractions >30 relatively specific PKG substrates were enriched after chromatography, especially P130, P94, P58, P52, P45, P40, P36, P34, P28, P26, P24, and P20. These results indicate that brain is not lacking in PKG substrates and show that many are apparently quite specific substrates for this enzyme. The identification of some of these novel PKG substrates will facilitate understanding the role of cGMP signaling in the brain.  相似文献   

2.
The major components of crude brain synaptosomes (synaptic membranes, mitochondria, and myelin) have been separated and analyzed by polyacrylamide gel electrophoresis for the presence of proteins that serve as substrates for protein carboxyl methyltransferase. Of the three fractions, synaptic membranes contain the largest number of individual methyl acceptors (at least seven), while mitochondria contain no well-defined methyl acceptors. Undisrupted myelin contains a single major methyl acceptor with a very low apparent molecular weight. The patterns of protein methylation in synaptic membranes prepared from cerebral cortex, hippocampus, striatum, thalamus, and tectum showed marked differences; however, these differences could largely be explained by differential degrees of myelin contamination in synaptic membranes from the different regions. The effect of trypsin pretreatment on the carboxyl methylation of intact and lysed synaptosomes was studied to estimate the sidedness of the major methylation sites on synaptic membranes. One of the methyl acceptors (Mr 48K) appears to be facing the intracellular surface of the synaptosome, but most sites appear to be outward facing.  相似文献   

3.
The subcellular distribution of protein tyrosine kinase in rat forebrain was determined using [Val5]-angiotensin II as exogenous substrate. Enzyme activity was present in each of the fractions analyzed and was enriched in synaptic membranes (SMs) and the synaptosomal soluble fraction (2.2- and 2.5-fold over the homogenate, respectively). SMs also phosphorylated polyglutamyltyrosine (pGT; molar ratio of 4:1), the Vmax for angiotensin and pGT phosphorylation being 26.3 +/- 1.6 and 142 +/- 4 pmol/min/mg, respectively. Extraction of SMs with several different detergents resulted in enhanced enzyme activity and the solubilization of 33-37% of the angiotensin and 43-70% of the pGT-phosphorylating activity. Isolated postsynaptic densities (PSDs) contained tyrosine kinase and phosphorylated angiotensin and pGT. The Vmax values for angiotensin and pGT phosphorylation by PSDs were 17 +/- 5 and 23 +/- 1 pmol/min/mg, respectively. Six putative endogenous substrates for SM tyrosine kinase, with molecular weights of 205K, 180K, 76K, 60K, 50K, and 45K, were identified. Each of these proteins, except p76, was phosphorylated in the detergent-insoluble residue obtained following the extraction of SMs with Triton X-100 as well as in PSDs, indicating that the postsynaptic apparatus is an active site of tyrosine phosphorylation. The phosphorylation of p76 was localized to the Triton X-100 extract and also occurred in the synaptosomal soluble fraction. The results indicate that tyrosine kinase and its substrates are located in both pre- and postsynaptic compartments and suggest a role for this enzyme in synaptic function.  相似文献   

4.
A conserved family of herpesvirus protein kinases plays a crucial role in herpesvirus DNA replication and virion production. However, despite the fact that these kinases are potential therapeutic targets, no systematic studies have been performed to identify their substrates. We generated an Epstein-Barr virus (EBV) protein array to evaluate the targets of the EBV protein kinase BGLF4. Multiple proteins involved in EBV lytic DNA replication and virion assembly were identified as previously unrecognized substrates for BGLF4, illustrating the broad role played by this protein kinase. Approximately half of the BGLF4 targets were also in vitro substrates for the cellular kinase CDK1/cyclin B. Unexpectedly, EBNA1 was identified as a substrate and binding partner of BGLF4. EBNA1 is essential for replication and maintenance of the episomal EBV genome during latency. BGLF4 did not prevent EBNA1 binding to sites in the EBV latency origin of replication, oriP. Rather, we found that BGLF4 was recruited by EBNA1 to oriP in cells transfected with an oriP vector and BGLF4 and in lytically induced EBV-positive Akata cells. In cells transfected with an oriP vector, the presence of BGLF4 led to more rapid loss of the episomal DNA, and this was dependent on BGLF4 kinase activity. Similarly, expression of doxycycline-inducible BGLF4 in Akata cells led to a reduction in episomal EBV genomes. We propose that BGLF4 contributes to effective EBV lytic cycle progression, not only through phosphorylation of EBV lytic DNA replication and virion proteins, but also by interfering with the EBNA1 replication function.Herpesviruses encode two families of serine/threonine protein kinases, one of which, the BGLF4 (Epstein-Barr virus [EBV])/UL97 (human cytomegalovirus)/UL13 (herpes simplex virus)/ORF36 (Kaposi''s sarcoma-associated herpesvirus)/ORF47 (varicella-zoster virus) family, is the sole protein kinase encoded by beta and gamma herpesviruses. The protein kinases phosphorylate both viral and host proteins (16, 21, 42) and are necessary for efficient virus lytic replication. Consequently, these kinases have been of interest as potential targets for antiviral drug development (37), and the compound 1263W94 (maribavir), which inhibits the cytomegalovirus UL97 protein (3), has been used in phase I clinical trials (27, 31, 47).EBV infection is prevalent worldwide, and primary infection in adolescence or early adulthood is associated in 30 to 40% of cases with infectious mononucleosis. EBV efficiently infects B cells in the lymphoid tissues of the Waldeyer ring (43). EBV infection of B cells is biased toward establishment of latency with limited viral-gene expression (49). During latent infection, EBV genomes are maintained as extrachromosomal episomes. Replication of episomal genomes utilizes the latency origin of replication, oriP. The only EBV-encoded protein required is the origin binding protein EBNA1. All other essential replication factors are provided by the cell. Expression of the EBV replicative cycle and production of progeny virus take place in terminally differentiated plasma B cells (11, 29), and epithelial cells may also contribute to the cycle of virus replication and spread that is an important component of both persistent infection of the individual and transmission of virus from one individual to the next (4, 22). Lytic DNA replication initiates at separate origins, oriLyt. EBV encodes a set of six core lytic replication proteins, along with ancillary proteins, such as thymidine kinase (TK), that are involved in nucleotide metabolism (13, 44).Several substrates have been described for the EBV BGLF4 protein kinase, including the core lytic EBV replication protein BMRF1, the polymerase processivity factor (8, 17). BGLF4 has also been found to locate to sites of lytic viral replication (46), to be required for efficient lytic DNA replication and release of nucleocapsids from the nucleus (18), and to contribute to the compaction of cell chromatin seen in cells undergoing lytic replication (32). Protein chip technology provides a new tool for global analysis of activities for biologically important enzymes, such as ubiquitin ligases, DNA repair enzymes, and kinases (7, 19, 36, 38, 52). Using an EBV protein array for unbiased screening, we identified multiple new BGLF4 substrates involved in lytic DNA replication, capsid assembly, and DNA packaging. Unexpectedly, we also identified EBNA1 as a substrate and binding partner for BGLF4. The data suggest that the contribution of BGLF4 to the EBV lytic cycle extends beyond the previously recognized contributions to lytic DNA replication and virion production and includes facilitating the switch from latent to lytic DNA replication by downregulating the EBNA1 replication function.  相似文献   

5.
Abstract: A method of polyacrylamide gel electrophoresis utilizing the discontinuous pH-stacking gel format, the cationic detergent cetylpyridinium chloride, and an acidic buffer system has been applied to detection of specific substrates for protein carboxyl methyltransferase (PCM, EC 2.1.1.24) in cytosol fractions of bovine cerebral cortex. This electrophoresis system produces a high-resolution separation of proteins while preventing spontaneous hydrolysis of protein carboxyl methyl esters. Separation occurs largely on the basis of molecular weight. By running polyacrylamide gels at 4°C or 25°C, it was possible to demonstrate that any specific methyl-accepting protein is modified to form a labile methyl ester rather than the more stable N -derivative. Using this system, we have found that partially purified fractions of PCM contain a variety of endogenous methyl-accepting proteins. The apparent specificity of these substrates varies widely; some apparently abundant proteins show little or no methylation, while other apparently less abundant proteins exhibit a relatively high degree of methylation. One protein, with an apparent Mr of 46,000, exhibited an exceptional degree of methylation. Two distinct classes of protein carboxyl methyl esters could be distinguished by their differing susceptibility to nonenzymatic hydrolysis. The possible relevance of our findings to the recent suggestion that PCM specifically methylates abnormal d-aspartyl residues in age-racemized proteins is considered.  相似文献   

6.
The coronavirus nucleocapsid protein (N), together with the large, positive-strand RNA viral genome, forms a helically symmetric nucleocapsid. This ribonucleoprotein structure becomes packaged into virions through association with the carboxy-terminal endodomain of the membrane protein (M), which is the principal constituent of the virion envelope. Previous work with the prototype coronavirus mouse hepatitis virus (MHV) has shown that a major determinant of the N-M interaction maps to the carboxy-terminal domain 3 of the N protein. To explore other domain interactions of the MHV N protein, we expressed a series of segments of the MHV N protein as fusions with green fluorescent protein (GFP) during the course of viral infection. We found that two of these GFP-N-domain fusion proteins were selectively packaged into virions as the result of tight binding to the N protein in the viral nucleocapsid, in a manner that did not involve association with either M protein or RNA. The nature of each type of binding was further explored through genetic analysis. Our results defined two strongly interacting regions of the N protein. One is the same domain 3 that is critical for M protein recognition during assembly. The other is domain N1b, which corresponds to the N-terminal domain that has been structurally characterized in detail for two other coronaviruses, infectious bronchitis virus and the severe acute respiratory syndrome coronavirus.The assembly of coronaviruses is driven principally by homotypic and heterotypic interactions between the two most abundant virion proteins, the membrane protein (M) and the nucleocapsid protein (N) (14, 32). The M protein is a triple-spanning transmembrane protein residing in the virion envelope, which is derived from the cellular budding site, the endoplasmic reticulum-Golgi intermediate compartment. More than half of the M molecule, its carboxy-terminal endodomain, is situated in the interior of the virion, where it contacts the nucleocapsid (46, 50). Also found in the virion envelope is the spike protein (S), which, although crucial for viral infectivity, is not an essential participant in assembly. The other canonical component of the coronavirus envelope is the small envelope protein (E), the function of which is enigmatic. Some evidence suggests that the E protein does not make sequence-specific contacts with other viral proteins (27) but instead functions by modifying the budding compartment, perhaps as an ion channel (56, 57). Alternatively, or additionally, E could act in a chaperone-like fashion to facilitate homotypic interactions between M protein monomers or oligomers (4).The N protein is the only protein constituent of the helically symmetric nucleocapsid, which is located in the interior of the virion. Coronavirus N proteins are largely basic phosphoproteins that share a moderate degree of homology across all three of the phylogenetic groups within the family (29). Some time ago, we proposed a model that pictured the N protein as comprising three domains separated by two spacers (A and B) (40). This arrangement was originally inferred from a sequence comparison of the N genes of multiple strains of the prototypical group 2 coronavirus, mouse hepatitis virus (MHV), and its validity seemed to be reinforced by numerous sequences that later became available. Part of this model, the delineation of spacer B and the acidic, carboxy-terminal domain 3, has been well supported by subsequent work (22, 25, 41, 42). However, a wealth of recent, detailed structural studies of bacterially expressed domains of the N proteins of the severe acute respiratory syndrome coronavirus (SARS-CoV) and of infectious bronchitis virus (IBV) has much more precisely mapped boundaries within the remainder of the N molecule (8, 16, 21, 23, 47, 51, 60). The latter studies have shown that the N protein contains two independently folding domains, designated the N-terminal domain (NTD) and the C-terminal domain (CTD). It should be pointed out that this nomenclature can be misleading: the NTD does not contain the amino terminus of the protein, and the CTD does not contain the carboxy terminus of the protein. Specifically, the CTD does not include spacer B and domain 3. The NTD and the CTD are separated by an intervening serine- and arginine-rich region; this region was previously noted to resemble the SR domains of splicing factors (42), and it has recently been shown to be intrinsically disordered (6, 7).In the assembled virion, the three known partners of the N protein are the M protein, the genomic RNA, and other copies of the N protein itself. We have sought to develop genetic and molecular biological methods that will begin to elucidate the varied ways in which the N molecule interacts during MHV infection. We previously found that the fusion of N protein domain 3 to a heterologous marker, green fluorescent protein (GFP), results in incorporation of GFP into virions (22). In the present study, we similarly fused each of the individual domains of N to GFP, and we thereby uncovered two strong modes of N protein-N protein interaction that likely contribute to virion architecture.  相似文献   

7.
The rat CNS contains high levels of tyrosine-specific protein kinases that specifically phosphorylate the tyrosine-containing synthetic peptide poly(Glu80,Tyr20). The phosphorylation of this peptide is rapid and occurs with normal Michaelis-Menten kinetics. Using this peptide to assay for enzyme activity, we have measured the protein tyrosine kinase activity in homogenates from various regions of rat CNS. A marked regional distribution pattern was observed, with high activity present in cerebellum, hippocampus, olfactory bulb, and pyriform cortex, and low activity in the pons/medulla and spinal cord. The distribution of protein tyrosine kinase activity was examined in various subcellular fractions of rat forebrain. The majority of the activity was associated with the particulate fractions, with enrichment in the crude microsomal (P3) and crude synaptic vesicle (LP2) fractions. Moreover, the subcellular distribution of pp60csrc, a well-characterized protein tyrosine kinase, was examined by immunoblot analysis using an affinity-purified antibody specific for pp60csrc. The subcellular distribution of pp60csrc paralleled the overall protein tyrosine kinase activity. In addition, using an antibody specific for phosphotyrosine, endogenous substrates for protein tyrosine kinases were demonstrated on immunoblots of homogenates from the various regions and the subcellular fractions. The immunoblots revealed numerous phosphotyrosine-containing proteins that were present in many of the CNS regions examined and were associated with specific subcellular fractions. The differences in tyrosine-specific protein kinase activity, and in phosphotyrosine-containing proteins, observed in various regional areas and subcellular fractions may reflect specific functional roles for protein tyrosine kinase activity in mammalian brain.  相似文献   

8.
9.
Although they are the primary determinants of substrate specificity, few E3-substrate pairs have been positively identified, and few E3's profiled in a proteomic fashion. Praja1 is an E3 implicated in bone development and highly expressed in brain. Although it has been well studied relative to the majority of E3's, little is known concerning the repertoire of proteins it ubiquitylates. We sought to identify high confidence substrates for Praja1 from an unbiased proteomic profile of thousands of human proteins using protein microarrays. We first profiled Praja1 activity against a panel of E2's to identify its optimal partner in vitro. We then ubiquitylated multiple, identical protein arrays and detected putative substrates with reagents that vary in ubiquitin recognition according to the extent of chain formation. Gene ontology clustering identified putative substrates consistent with information previously known about Praja1 function, and provides clues into novel aspects of this enzyme's function.  相似文献   

10.
11.
Macrophage migration inhibitory factor (MIF) is a ubiquitous protein playing various immunologic, enzymatic, and hormonal roles. MIF was originally identified for its capacity to inhibit the random movement of macrophages in vitro. MIF is widely expressed in many tissues with particularly high levels in the nervous system. Using the reversed-phase HPLC, N-terminal microsequence analysis, and database searching, we have identified in bovine brain several MIF-like proteins. According to mass spectral analysis, the molecular masses for three of them were determined as 12,369.2, 12,299.7, and 9,496.2 Da. In addition, we have identified another MIF-related protein (29,568.9 Da) by Western blotting using anti-MIF antibody raised to MIF (having an apparent molecular weight of 12 kDa) isolated to homogeneity from bovine brain cytosol. The modified purification procedure was mainly based on exclusion- and ion-exchange chromatography. Using p-hydroxyphenylpyruvic acid as a substrate, we have demonstrated tautomerase activity of the isolated MIF. The N-terminal sequences for all MIF-like proteins were found to be identical. Several other higher molecular weight putative MIF-related proteins were also revealed in the bovine brain cytosol extract. A multifunctional nature of MIF is suggested to be a result of its occurrence in different oligomerization states in a wide variety of tissues and cells.  相似文献   

12.
Protein kinases are implicated in multiple diseases such as cancer, diabetes, cardiovascular diseases, and central nervous system disorders. Identification of kinase substrates is critical to dissecting signaling pathways and to understanding disease pathologies. However, methods and techniques used to identify bona fide kinase substrates have remained elusive. Here we describe a proteomic strategy suitable for identifying kinase specificity and direct substrates in high throughput. This approach includes an in vitro kinase assay-based substrate screening and an endogenous kinase dependent phosphorylation profiling. In the in vitro kinase reaction route, a pool of formerly phosphorylated proteins is directly extracted from whole cell extracts, dephosphorylated by phosphatase treatment, after which the kinase of interest is added. Quantitative proteomics identifies the rephosphorylated proteins as direct substrates in vitro. In parallel, the in vivo quantitative phosphoproteomics is performed in which cells are treated with or without the kinase inhibitor. Together, proteins phosphorylated in vitro overlapping with the kinase-dependent phosphoproteome in vivo represents the physiological direct substrates in high confidence. The protein kinase assay-linked phosphoproteomics was applied to identify 25 candidate substrates of the protein-tyrosine kinase SYK, including a number of known substrates and many novel substrates in human B cells. These shed light on possible new roles for SYK in multiple important signaling pathways. The results demonstrate that this integrated proteomic approach can provide an efficient strategy to screen direct substrates for protein tyrosine kinases.Protein phosphorylation plays a pivotal role in regulating biological events such as protein–protein interactions, signal transduction, subcellular localization, and apoptosis (1). Deregulation of kinase-substrate interactions often leads to disease states such as human malignancies, diabetes, and immune disorders (2). Although a number of kinases are being targeted to develop new drugs, our understanding of the precise relationships between protein kinases and their direct substrates is incomplete for the majority of protein kinases (3). Thus, mapping kinase–substrate relationships is essential for the understanding of biological signaling networks and the discovery and development of drugs for targeted therapies (4). Toward this goal, various in vitro kinase assays using synthetic peptide libraries (5), phage expression libraries (6), protein arrays (79), or cell extracts (10, 11) have been explored for the screening of kinase substrates.Besides classical biochemical and genetic methods, mass spectrometry-based high throughput approaches have become increasingly attractive because they are capable of sequencing proteins and localizing phosphorylation sites at the same time. Mass spectrometry-based proteomic methods have been extensively applied to kinase-substrate interaction mapping (12) and global phosphorylation profiling (1315). Although thousands of phosphorylation events can be inspected simultaneously (16, 17), large-scale phosphoproteomics does not typically reveal direct relationships between protein kinases and their substrates.Recently, several mass spectrometry-based proteomic strategies have been introduced for identifying elusive kinase substrates (7, 18, 19). Taking advantage of recent advances of high speed and high-resolution mass spectrometry, these methods used purified, active kinases to phosphorylate cell extracts in vitro, followed by mass spectrometric analysis to identify phosphoproteins. These approaches commonly face the major challenge of distinguishing phosphorylation events triggered by the kinase reaction from background signals introduced by endogenous kinase activities (20). To dissect the phosphorylation cascade, Shokat and colleagues developed an approach named Analog-Sensitive Kinase Allele (ASKA)1 (21). In their approach, a kinase is engineered to accept a bulky-ATP analog exclusively so that direct phosphorylation caused by the analog-sensitive target kinase can be differentiated from that of wild type kinases. As a result, indirect effects caused by contaminating kinases during the in vitro kinase assay are largely eliminated. ASKA has recently been coupled with quantitative proteomics, termed Quantitative Identification of Kinase Substrates (QIKS) (12), to identify substrate proteins of Mek1. Recently, one extension of the ASKA technique is for the analog ATP to carry a γ-thiophosphate group so that in vitro thiophosphorylated proteins can be isolated for mass spectrometric detection (2224). In addition to ASKA, radioisotope labeling using [γ-32P]ATP (10), using concentrated purified kinase (25), inactivating endogenous kinase activity by an additional heating step (11), and quantitative proteomics (26, 27) are alternative means aimed to address the same issues. All of these methods, however, have been limited to the identification of in vitro kinase substrates.To bridge the gap between in vitro phosphorylation and physiological phosphorylation events, we have recently introduced an integrated strategy termed Kinase Assay-Linked Phosphoproteomics (KALIP) (28). By combining in vitro kinase assays with in vivo phosphoproteomics, this method was demonstrated to have exceptional sensitivity for high confidence identification of direct kinase substrates. The main drawback for the KALIP approach is that the kinase reaction is performed at the peptide stage to eliminate any problems related to contamination by endogenous kinases. However, the KALIP method may not be effective for kinases that require a priming phosphorylation event (i.e. a previous phosphorylation, on substrate or kinase, has effect on following phosphorylation) (29), additional interacting surfaces (30), or a docking site on the protein (31). For example, basophilic kinases require multiple basic resides for phosphorylation and tryptic digestion will abolish these motifs, which are needed for effective kinase reactions.We address the shortcoming by introducing an alternative strategy termed Protein Kinase Assay-Linked Phosphoproteomics (proKALIP). The major difference between this method and the previous KALIP method is the utilization of protein extracts instead of digested peptides as the substrate pool. The major issue is how to reduce potential interference by endogenous kinase activities. One effective solution is to use a generic kinase inhibitor, 5′-(4-fluorosulfonylbenzoyl)adenosine (FSBA), which was widely used for covalent labeling of kinases (32, 33), kinase isolation (34), kinase activity exploration (35, 36), and more recently kinase substrate identification by Kothary and co-workers (37). However, an extra step is required to effectively remove the inhibitor before the kinase reaction, which may decrease the sensitivity. ProKALIP addresses the issue by carrying out the kinase reaction using formerly in vivo phosphorylated proteins as candidates. This step efficiently improves the sensitivity and specificity of the in vitro kinase reaction. Coupled with in vivo phosphoproteomics, proKALIP has gained a high sensitivity and provided physiologically relevant substrates with high confidence.To demonstrate the proKALIP strategy, the protein-tyrosine kinase SYK was used as our target kinase. SYK is known to play a crucial role in the adaptive immune response, particularly in B cells, by facilitating the antigen induced B-cell receptor (BCR) signaling pathways and modulating cellular responses to oxidative stress in a receptor-independent manner (38, 39). SYK also has diverse biological functions such as innate immune recognition, osteoclast maturation, cellular adhesion, platelet activation, and vascular development (38). In addition, the expression of SYK is highly correlated to tumorigenesis by promoting cell–cell adhesion and inhibiting the motility, growth, and invasiveness of certain cancer cells (40). In this study, we attempt to identify bona fide substrates of SYK in human B cells using the proKALIP approach and demonstrate the specificity and sensitivity of this strategy.  相似文献   

13.
S20Y murine neuroblastoma cells appear to express a protein component(s) able to adhere specifically to the oligosaccharide portion of GM1 (oligo-GM1). To identify proteins with which the oligo-GM1 becomes closely associated, a radiolabeled (125I), photoactivatable derivative of oligo-GM1 was prepared. This was accomplished by reductive amination of the glucosyl moiety of oligo-GM1 to 1-deoxy-1-aminoglucitol, followed by reaction of the amine with sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (SASD). Crosslinking studies using the photoactivatable probe indicated that it came in close proximity to a protein with an apparent molecular mass of approximately 71 kDa. In competition experiments, as little as a 10-fold molar excess of oligo-GM1 resulted in a selective reduction in labeling of this protein; preincubation with a 200-fold molar excess of siayllactose was necessary to observe the same change in the labeling pattern, lending additional support to the hypothesis that the approximately 71-kDa protein specifically associates with oligo-GM1. Cell surface location of the oligo-GM1 binding protein was confirmed using subcellular fractionation and morphological analyses.  相似文献   

14.
为研究蛋白激酶C(protein kinase C,PKC)在小鼠早期发育中的调节作用,运用超排卵和体外受精技术,采用体外磷酸化和放射自显影的方法,鉴定小鼠1-细胞期受精卵中PKC的底物。经特殊的反复冻融处理,消除卵中内源性蛋白激酶活性。55个受精卵的样品中加入部分纯化的PKC,结合应用较强的PKC抑制剂H-7和星形孢菌素以及促分裂原活化蛋白激酶抑制剂PD098059作为对照,观察到12条PKC底物蛋白的放射自显影带,根据标准蛋白质对值绘制的标准曲线计算,这些磷酸化蛋白的相对分子量分别约为120kDa、100kDa、79kDa、63kDa、59kDa、47kDa、40kDa、34kDa、32kDa、26kDa、24kDa和22kDa。实验结果表明,PKC可通过底物蛋白活性的调节,在小鼠早期发育中发挥重要作用。  相似文献   

15.
16.
17.
Abstract: When rat brain mitochondria are incubated with [γ-32P]ATP, there is a rapid (10 s) phosphorylation of proteins designated E, and F of M.W. 42,000 and 32,000, respectively. Although [γ-32P]ATP was the preferred substrate for protein F, a small amount of labeling did occur with [γ-32P]GTP. Phosphorylation of E1 was absolutely ATP-dependent. On the other hand, a 32,000 M.W. protein from rat liver mitoplasts (mitochondria devoid of an outer membrane) was highly phosphorylated when [γ-32P]GTP was used but not at all phosphorylated within short time periods with [γ-32P]ATP. Both the ATP-labeled brain phosphoprotein F and GTP-labeled liver protein migrated to identical positions on high-resolution two-dimensional polyacrylamide gels, and both contained acid-labile phosphoryl groups. Furthermore, both phosphoproteins were identified as the autophosphorylated subunit of succinyl-CoA synthetase (SCS, EC 6.2.1.4) by using antibody directed against purified GTP-dependent porcine SCS. However, immunotitration experiments with anti-porcine SCS revealed that ATP- and GTP-labeled protein F in brain differed in their interactions with antibody, suggesting that in rat brain mitochondria two different forms of the enzyme exist that are immunologically distinct and differ in substrate specificity. When mitochondrial preparations enriched in particular brain cell or subcellular types were examined, an unequal distribution of E1 and the two forms of protein F were observed. A brain subfraction containing neuronal cell body and glial mitochondria (CM) was found to contain E1 and approximately equal amounts of the ATP- and GTP-dependent forms of protein F. Light synaptic mitochondria(SM1) contained ATP-dependent protein F almost exclusively and were depleted in E1. Dense synaptic mitochondria (SM2) are rich in the ATP form of SCS but also contain low amounts of the GTP enzyme.  相似文献   

18.
19.
 本文介绍了从人脑中分离纯化髓鞘碱性蛋白的方法,人脑组织匀浆经甲醇—氯仿脱脂、酸提取、硫酸铵沉淀和羧甲基纤维素柱层析,得到了纯化的髓鞘碱性蛋白。该蛋白在SDS聚丙烯酰胺凝胶电泳中为单一带,分子量为21kD。在聚焦电泳中测得其等电点在pH10以上,氨基酸组成分析结果也与文献值接近。这为进一步研究人脑髓鞘碱性蛋白的抗原性创造了条件。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号