共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using a specific antiserum raised against synthetic neuropeptide Y, we examined the localization of immunoreactivity in the brain and hypophysis of the cloudy dogfish, Scyliorhinus torazame, by the peroxidase-antiperoxidase method. Immunoreactive perikarya were demonstrated in the ganglion of the nervus terminalis, the dorsocaudal portions of the pallium dorsale, the basal telencephalon, and the nucleus lateralis tuberis and the nucleus lobi lateralis in the hypothalamus. Labeled perikarya were also found in the tegmentum mesencephali, the corpus cerebelli, and the medulla oblongata. Some of the immunoreactive neurons in the hypothalamus were of the CSF-contacting type. The bulk of the labeled fibers in the nervus terminalis ran toward the basal telencephalon, showing radial projections and ramifications. Large numbers of these fibers coursed into the nucleus septi caudoventralis and the nucleus interstitialis commissurae anterioris, where they became varicose and occasionally formed fine networks or invested immunonegative perikarya. In the diencephalon, immunoreactive fibers were observed throughout the hypothalamus, e.g., in the pars neurointermedia of the hypophysis, the subependymal layer of the lobus inferior hypothalami, and in the neuropil of the posterior (mammillary) recess organ. Labeled fibers were scattered throughout the rest of the brain stem and were also seen in the granular layer of the cerebellum. These results suggest that, in the dogfish brain, neuropeptide Y or a related substance is involved in a variety of physiological processes in the brain, including the neuroendocrine control of the hypophysis. 相似文献
2.
Summary The distribution of the molluscan cardioexcitatory tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) in the brain of the cloudy dogfish, Scyliorhinus torazame, was examined by immunocytochemistry. FMRFamide-like immunoreactivity was demonstrated to occur extensively in various regions of the dogfish brain, except for the corpus cerebelli. Immunoreactive neuronal perikarya were located in the ganglion of the nervus terminalis, the preoptic area, and the hypothalamic periventricular gray matter consisting of the nucleus medius hypothalamicus, the nucleus lateralis tuberis, and the nucleus lobi lateralis. some of the immunoreactive cells in the hypothalamus were identified as cerebrospinal fluid-contacting neurons. The bulk of the immunostained fibers in the nervus terminalis penetrated into the midventral portion of the telencephalon and ran dorsocaudally toward the basal telencephalon and hypothalamus, showing radial projections or ramifications. The labeled fibers were abundant in the midbasal part of the telencephalon and in the hypothalamus, where some fibers were found in loose networks around the cell bodies of the nucleus septi and hypothalamic periventricular nuclei. The fibers demonstrated in the hypothalamus terminated around the vascular wall of the primary capillary plexus of the median eminence or penetrated deeply into the pars intermedia of the hypophysis. These results suggest that, in the dogfish, an FMRFamide-like substance participates in the regulation of adenohypophysial function. This molecule may have a role as a neurotransmitter and/or neuromodulator in the central nervous system. 相似文献
3.
N. Aste C. Viglietti-Panzica A. Fasolo C. Andreone H. Vaudry G. Pelletier G. C. Panzica 《Cell and tissue research》1991,265(2):219-230
Summary In the present study, we have demonstrated, by means of the biotin-avidin method, the widespread distribution of neuropeptide Y (NPY)-immunoreactive structures throughout the whole brain of the Japanese quail (Coturnix coturnix japonica). The prosencephalic region contained the highest concentration of both NPY-containing fibres and perikarya. Immunoreactive fibres were observed throughout, particularly within the paraolfactory lobe, the lateral septum, the nucleus taeniae, the preoptic area, the periventricular hypothalamic regions, the tuberal complex, and the ventrolateral thalamus. NPY-immunoreactive cells were represented by: a) small scattered perikarya in the telencephalic portion (i.e. archistriatal, neostriatal and hyperstriatal regions, hippocampus, piriform cortex); b) medium-sized cell bodies located around the nucleus rotundus, ventrolateral, and lateral anterior thalamic nuclei; c) small clustered cells within the periventricular and medial preoptic nuclei. The brainstem showed a less diffuse innervation, although a dense network of immunopositive fibres was observed within the optic tectum, the periaqueductal region, and the Edinger-Westphal, linearis caudalis and raphes nuclei. Two populations of large NPY-containing perikarya were detected: one located in the isthmic region, the other at the boundaries of the pons with the medulla. The wide distribution of NPY-immunoreactive structures within regions that have been demonstrated to play a role in the control of vegetative, endocrine and sensory activities suggests that, in birds, this neuropeptide is involved in the regulation of several aspects of cerebral functions.Abbreviations
AA
archistriatum anterius
-
AC
nucleus accumbens
-
AM
nucleus anterior medialis
-
APP
avian pancreatic polypeptide
-
CNS
centrai nervous system
-
CO
chiasma opticum
-
CP
commissura posterior
-
CPi
cortex piriformis
-
DIC
differential interferential contrast
-
DLAl
nucleus dorsolateralis anterior thalami, pars lateralis
-
DLAm
nucleus dorsolateralis anterior thalami, pars medialis
-
E
ectostriatum
-
EW
nucleus of Edinger-Westphal
-
FLM
fasciculus longitudinalis medialis
-
GCt
substantia grisea centralis
-
GLv
nucleus geniculatus lateralis, pars ventralis
-
HA
hyperstriatum accessorium
-
Hp
hippocampus
-
HPLC
high performance liquid chromatography
-
HV
hyperstriatum ventrale
-
IF
nucleus infundibularis
-
IO
nucleus isthmo-opticus
-
IP
nucleus interpeduncularis
-
IR
immunoreactive
-
LA
nucleus lateralis anterior thalami
-
LC
nucleus linearis caudalis
-
LFS
lamina frontalis superior
-
LH
lamina hyperstriatica
-
LHRH
luteinizing hormone-releasing hormone
-
LoC
locus coeruleus
-
LPO
lobus paraolfactorius
-
ME
eminentia mediana
-
N
neostriatum
-
NC
neostriatum caudale
-
NPY
neuropeptide Y
-
NIII
nervus oculomotorius
-
NV
nervus trigeminus
-
NVI
nervus facialis
-
NVIIIc
nervus octavus, pars cochlearis
-
nIV
nucleus nervi oculomotorii
-
nIX
nucleus nervi glossopharyngei
-
nBOR
nucleus opticus basalis (ectomamilaris)
-
nCPa
nucleus commissurae pallii
-
nST
nucleus striae terminalis
-
OM
tractus occipitomesencephalicus
-
OS
nucleus olivaris superior
-
PA
palaeostriatum augmentatum
-
PBS
phosphate-buffered saline
-
POA
nucleus praeopticus anterior
-
POM
nucleus praeopticus medialis
-
POP
nucleus praeopticus periventricularis
-
PP
pancreatic polypeptide
-
PYY
polypeptide YY
-
PVN
nucleus paraventricularis magnocellularis
-
PVO
organum paraventriculare
-
R
nucleus raphes
-
ROT
nucleus rotundus
-
RP
nucleus reticularis pontis caudalis
-
Rpc
nucleus reticularis parvocellularis
-
RPgc
nucleus reticularis pontis caudalis, pars gigantocellularis
-
RPO
nucleus reticularis pontis oralis
-
SCd
nucleus subcoeruleus dorsalis
-
SCv
nucleus subcoeruleus ventralis
-
SCNm
nucleus suprachiasmaticus, pars medialis
-
SCNl
nucleus suprachiasmaticus, pars lateralis
-
SL
nucleus septalis lateralis
-
SM
nucleus septalis medialis
-
Ta
nucleus tangentialis
-
TeO
tectum opticum
-
Tn
nucleus taeniae
-
TPc
nucleus tegmenti pedunculo-pontinus, pars compacta
-
TSM
tractus septo-mesencephalicus
-
TV
nueleus tegmenti ventralis
-
VeL
nucleus vestibularis lateralis
-
VLT
nucleus ventrolateralis thalami
-
VMN
nucleus ventromedialis hypothalami
A preliminary report of this study was presented at the 15th Conference of European Comparative Endocrinologists, Leuven, Belgium, September 1990 相似文献
4.
Summary S-100 protein-immunoreactive cells were demonstrated by immunocytochemical procedures in the hypophysis and saccus vasculosus of two species of elasmobranchs (Mustelus manazo and Scyliorhinus torazame). In the saccus vasculosus of M. manazo, immunoreactivity was detectable exclusively in the fibrous portions interposed between the epithelial layer and the blood vessels. In the neurohypophysis, tanycytes and astrocytes of the median eminence were immunostained, but only a few labeled cells were found in the neurointermediate lobe. In S. torazame, the neurohypophysis displayed a similar distribution of immunoreactivity, but there were no labeled cells in the saccus vasculosus. In both species, none of the glandular cells of the hypophysis displayed immunoreactivity. Electron-microscopic examination showed that the immunostained cells in the saccus vasculosus correspond to astrocytes. 相似文献
5.
The sinus venosus of the elasmobranch heart is characterized by the presence of large bundles of unmyelinated nerve fibres that bulge into the cardiac lumen, below the endocardium. In the dogfish (Scyliorhinus canicula), these fibres contain numerous dense-core membrane-bounded granules of about 200 nm in diameter. Most intramural ganglion cells of the sinus venosus also show densely packed granules similar to those found in the subendocardial fibres. We have observed strong substance-P-like immunoreactivity in the large fibre bundles and in the perikarya of the ganglion cells. Preabsorption of the antisera with fragment 7–11 of substance P has shown that the antisera recognize the tachykinin canonic sequence. Our findings suggest that an undetermined tachykinin is secreted in the elasmobranch heart, and that it is probably released into the blood stream in the context of a little-known neuroendocrine system. 相似文献
6.
Mauro Vallarino Carla Viglietti-Panzica Gian Carlo Panzica 《Cell and tissue research》1990,262(3):507-513
Summary The distribution of vasotocin-like peptides in the central nervous system of the cartilaginous fish Scyliorhinus canicula was determined by indirect immunofluorescence and peroxidase anti-peroxidase techniques, using a specific antiserum raised in rabbits against synthetic vasotocin. Immunoreactive perikarya were mainly detected in the anterior hypothalamus, within the midcaudal part of the preoptic nucleus. The most rostral positive cell bodies were located in the dorso-lateral parts of the preoptic area, whereas at a more caudal level, they took a ventro-medial position within the deepest layers of the nucleus. Throughout the preoptic region these cells varied in shape according to their location. Occasionally, scattered vasotocin-like immunopositive cells were also identified in the nucleus periventricularis hypothalami. Vasotocin immunoreactivity was detected in numerous varicose nerve fibers of the preopticohypophysial tract. These fibers were seen to course through the medio-basal hypothalamus and caudally, after having passed the hypophysial stem, they reached the neurointermediate lobe of the pituitary. Numerous immunoreactive fibers were also observed within the rostro-medial region of the median eminence. At this level the fibers were in close proximity to the capillary loops. In the preoptic region, some stained cells exibited short processes that appeared to contact non-reactive perikarya. By comparing the distribution of vasotocin- and corticotropin-releasing factor immunoreactivity on adjacent then serial sections, it was revealed that these peptides, in S. canicula, do not coexist in the same perikarya. The present results, are compared with those obtained in other vertebrate groups, and their possible functional implications are discussed. 相似文献
7.
J. M. Grondona P. Fernández-Llebrez J. Pérez M. Cifuentes J. M. Pérez-Fígares E. M. Rodríguez 《Cell and tissue research》1994,276(3):515-522
We have raised antisera against extracts of the subcommissural organ (SCO) of the dogfish, Scyliorhinus canicula L. Brains of 2900 specimens were collected in acetone, and the region containing the SCO and posterior commissure was removed and extracted in three different media. Antisera against these crude extracts were raised in rats and rabbits. Sequential absorptions of the antisera with extracts from different regions of the dogfish brain were performed to eliminate unwanted antibodies. When used to immunostain sections of the whole central nervous system of the dogfish, these purified antisera reacted selectively with the SCO-Reissner's fiber complex. An antiserum against bovine Reissner's fiber was also used. The antisera against the dogfish SCO and bovine Reissner's fiber showed the same staining pattern in the SCO and the Reissner's fiber of the dogfish. For comparative purposes, the brains of 15 vertebrate species from all vertebrate classes were immunostained with both antisera. The anti-dogfish SCO serum reacted with the SCO of the dogfish and that of other phylogenetically related elasmobranch species. Neither the SCO of a primitive elasmobranch species, Heptranchias perlo, nor the SCO of the other classes of vertebrates reacted with the anti-dogfish SCO serum. However, the antiserum against bovine Reissner's fiber reacted with the SCO of all the investigated species. It is concluded that some epitopes (or compounds) in the secretory material of the SCO are class-specific, whereas others are conserved and are synthesized by the SCO in most vertebrate species. 相似文献
8.
Summary The development of GABA-like immunoreactivity was investigated in embryonic and juvenile locusts using an antibody raised against GABA-protein conjugates. GABA-like immunoreactivity was first detectable in the neuropile of embryonic ganglia at 55% development, and in neuronal somata at 62% development. The total number of immunoreactive somata increased between 62% and 85% embryonic development, and followed an anterio-posterior pattern of expression. At 85% development, the number of immunoreactive somata reached adult levels and no change in number was then seen. In embryonic stages and first and second juvenile instars two dorsal and four ventral groups of somata were labeled in all three thoracic ganglia, whilst in later juvenile instars one of the dorsal groups was visible as a separate entity only in the metathoracic ganglion. These early patterns were modified by alterations in the positions of some of the groups during late embryogenesis and during juvenile development to produce the adult pattern. The results show that the development of GABA expression is similar to that of other neurotransmitters. The characteristics of the development of immunoreactivity indicate that some of these immunoreactive clusters may be derived from clonally related neurones. Finally, we demonstrate the presence of immunoreactive somata and processes in embryos, which correspond to those of identified local and intersegmental interneurones studied in the adult.Abbreviations
Ab1–3
first-third abdominal ganglion
-
CON
connective
-
CI
1–3
common inhibitors 1–3
-
CTC
tract
-
DC I–VII
dorsal commissures I–VII
-
DIT
dorsal intermediate tract
-
DMT
dorsal median tract
-
LDT
lateral dorsal tract
-
LF
lateral fibres
-
o, iLVT
outer and inner lateral ventral tract
-
MVT
median ventral tract
-
N1–5
nerves 1–5
-
aPT
anterior perpendicular tract
-
PT
perpendicular tract
-
aRT
anterior ring tract
-
R1–5
nerve roots 1–5
-
PVC
posterior ventral commissure
-
SMC
supra-median commissure
-
T3
metathoracic neuromere
-
TT
T tract
-
aVAC
anterior ventral association centre
-
VC I
ventral commissure I
-
d,vVCII
dorsal and ventral parts of ventral commissure II
-
VF
ventral fibres
-
VIT
ventral intermediate tract
-
VLT
ventral lateral tract
-
VMT
ventral median tract
-
(d,v)LAG
(dorsal and ventral) lateral anterior group
-
LDG
lateral dorsal group
-
LVG
lateral ventral group
-
MDG
medial dorsal group
-
MPG
medial posterior group
-
MVG
medial ventral group 相似文献
9.
The distribution of neuropeptide F (NPF) immunoreactivity in the snail, Helix aspersa, has been demonstrated by immunocytochemistry using 2 regionspecific antisera. One, designated NPF3, was raised against a synthetic N-terminal fragment of Helix aspersa NPF; the other, designated PP221, was raised against the C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP) but cross-reacts fully with the analogous C-terminal region of Helix aspersa NPF. The distribution of NPF immunoreactivity has also been compared with that of FMRFamide using alternate serial sections of Helix aspersa ganglia. Results showed that NPF immunoreactivity was abundant and widespread in the central and peripheral nervous systems and the pattern of immunostaining obtained using both region-specific antisera was similar. Likewise, immunocytochemistry of neural tissues of a congeneric species, Helix pomatia, and 2 prosobranch gastropods, Buccinum undatum and Littorina littorea, produced similar staining patterns with both antisera. However, in the cephalopod mollusc, Loligo vulgaris, and the cestode, Moniezia expansa, positive immunostaining was only obtained with the C-terminal PP antiserum. Immunostaining of alternate serial sections of Helix aspersa ganglia with NPF3, and an antiserum raised to FMRFamide, showed that while a few neurones were immunoreactive with one antiserum only, in the majority, both immunoreactivities were co-localised. NPF thus appears to be an important neuropeptide of widespread distribution in Helix aspersa and the differential immunocytochemical staining obtained using the 2 region-specific antisera would suggest a high degree of primary structural conservation within the gastropod molluscs, but lack of conservation of the N-terminal region of the peptide in other invertebrate groups. 相似文献
10.
Summary An enzymatic method was developed to obtain intact seminiferous lobules from the testis of the dogfish (Scyliorhinus canicula L.). The freshly isolated lobules were then identified by use of a transillumination technique. Testes from mature dogfish were collected and transverse sections incubated with a mixture of collagenase (0.025%) + pronase (0.08%) at 4° C overnight. Dissociation of the tissue was achieved by mechanical agitation in a calcium and magnesium-free buffer (pH 7.8; 870 mOsm) at room temperature, for 30 min. Based on differences in light absorption and size as well as on comparison with the corresponding histological and ultrastructural cell composition, the seminiferous lobules were identified and classified according to the stages of spermatogenesis of Mellinger (1965). The characteristic changes take place in the size and surface of the lobules and are mainly due to differences in the arrangement of the germ cells, in their number, and in the light absorption characteristics of their nuclei. The combination of the procedures of isolation and transillumination of the dogfish seminiferous lobules, in native condition, offers an original method for the study of germ cell-Sertoli cell interactions in the non-mammalian vertebrate. 相似文献
11.
A. Ortiz de Zárate A. C. Villaro J. C. Etayo O. Díaz de Rada L. M. Montuenga P. Sesma J. J. Vázquez 《Cell and tissue research》1991,264(1):139-150
Summary The pancreatic endocrine component was studied at different stages of development in the tadpoles of Rana temporaria. The material was embedded in Epon, and serial semithin and thin sections were made in order to correlate ultrastructural features and tinctorial traits of the endocrine cells. Serial semithin sections were also stained with the peroxidase-antiperoxidase immunocytochemical method and with silver impregnations for argyrophilia and argentaffinity. In early larvae (legless tadpoles), A and B cells are present. Both can be found within ducts and exocrine tissue or, more frequently, in cellular clusters among the ducts and acini. These primitive islets are solid structures, surrounded but not penetrated by capillaries. Mitoses were observed in A and B cells. In the following phase (tadpoles with hindlegs), D and pancreatic polypeptide-immunoreactive cells are also present, as well as numerous endocrine cells scattered among exocrine tissue. There is also a change in the vascular-insular pattern: capillaries not only surround but also penetrate the endocrine group. The structure of the endocrine pancreas in older tadpoles is similar. Tinctorial traits and ultrastructural features of endocrine cells are described, and the origin of primitive islets is discussed. 相似文献
12.
Summary Developmental changes of thyrotropin-releasing hormone (TRH)-immunoreactive structures in the brain of mallard embryos were studied by means of immunocytochemistry (PAP technique). The primary antibody was generated against synthetic TRH. Immunoreactive neurons were first detected in the hypothalamus of 14-day-old embryos. By day 20, increasing numbers of immunoreactive perikarya were observed in the paraventricular nucleus, anterior preoptic region and supraoptic region. Immunoreactive fiber projections were seen in the median eminence as early as embryonic day 20; they occurred also in some extrahypothalamic regions (lateral septum, accumbens nucleus). The number and staining intensity of the cell bodies increased up to hatching, and continued to increase during the first week after hatching. 相似文献
13.
Mauro Vallarino Loredana D'Este Lucia Negri Irene Ottonello Tindaro Renda 《Cell and tissue research》1990,259(1):177-181
Summary The presence and distribution of bombesin-like material were investigated in the brain of the cartilaginous fishScyliorhinus canicula using conventional immunocytochemical techniques. Perikarya containing bombesin-like immunoreactivity were identified in the hypothalamus, within the magnocellular component of the preoptic nucleus. Some immunopositive elements appeared to be of cerebrospinal fluid-contacting type. Beaded immunoreactive fibers were seen crossing the ventral telencephalon and the whole hypothalamus. An important tract of fibers was found in the infundibular floor and in the median eminence, in close contact with the vascular system of the pituitary portal plexus. A moderate number of positive fibers innervated the habenular complex and the dorsal wall of the posterior tuberculum. These findings indicate that a neuropeptide strictly related to amphibian bombesin is located in specific hypothalamic neurons ofS. canicula. The distribution of the immunoreactive fibers and terminals suggests that, in fish, this peptide, may be involved in neuroendocrine and neuromodulator functions. 相似文献
14.
Summary Pancreatic acinar cells of rats obtained at 1,2, 3, 5, 7 and 14 days of age were examined using fine structural and morphometric techniques. From 5 days of age onwards, the acinar cells were analysed twice per day, at 20.00 h and 08.00 h.The present study demonstrates changes in the average volume of the cell, nucleus and cytoplasm, and volume densities of various cytoplasmic organelles during the first two weeks after birth. During early postnatal life, the volume density of rER increases, whereas that of zymogen granules decreases. From 5 days of age onwards, the volume densities of these two organelles differ significantly at 20.00 h and 08.00 h. During the first 2–3 days after birth, inclusion body-like structures appear in the cytoplasm of acinar cells; they contain aggregated zymogen granules and, sometimes, amorphous structures or cytoplasmic organelles. These structures also occur in interstitial cells and cells located in the intercalated region between acinar and ductal epithelial cells. Serum level of -amylase activity is high at birth, compared with other stages during the first three weeks. Degenerating acinar cells and cell debris can be seen in the acinar and ductal lumina during these stages, a feature suggesting holocrine secretion. Cellular polarity appears to be incomplete during the first two or three days after birth. 相似文献
15.
Bryan D. Noe Sharon L. Milgram A. Balasubramaniam P. C. Andrews Jaroslaw Calka John K. McDonald 《Cell and tissue research》1989,257(2):303-311
Summary Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities. These results are consistent with the hypothesis that peptides having significant sequence homology with human neuropeptide Y and porcine neuropeptide Y are present in the nerve fibers that permeate the islet. 相似文献
16.
Summary The endocrine pancreas of the Australian fattailed dunnart, Sminthopsis crassicaudata, was investigated by means of electron-microscopic immunocytochemistry using the protein A-gold technique on London resin (LR) white-embedded tissue. The primary antibodies used were raised against insulin, glucagon, somatostatin and pancreatic polypeptide. The morphology of the secretory granules differed in the four cell types. The insulin cells are pleomorphic, and the secretory granules composed of an electron-dense core surrounded by an electron-lucen halo. The glucago cells possess granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells have large, less dense secretory granules. The pancreatic polypeptide cells show small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborated by immunocytochemical data at the light-or preferably electron-microscopic level. Recent developments in immuno-electron-microscopic techniques have contributed to a better knowledge of cells responsible for the secretion of a wide variety of hormones, as in this study. 相似文献
17.
Summary The colocalization of the peptides neuropeptide Y (NPY) and Phe-Met-Arg-Phe-NH2 (FMRFamide) in the brain of the Atlantic salmon was investigated with double immunofluorescence labeling and peroxidase-antiperoxidase immunocytochemical techniques. Colocalization of NPY-like and FMRE amide-like immunoreactivities was observed in neuronal cell bodies and fibers in four brain regions: in the lateral and commissural nuclei of the area ventralis telencephali, in the nucleus ventromedialis thalami, in the laminar nucleus of the mesencephalic tegmentum, and in a group of small neurons situated among the large catecholaminergic neurons in the isthmal region of the brainstem. All cell bodies in these nuclei were immunoreactive to both NPY and FMRF. We consistently observed larger numbers of FMRF-immunoreactive than NPY-immunoreactive fibers. In the nucleus ventromedialis thalami NPY- and FMRFamide-like immunoreactivities were colocalized in cerebrospinal fluid (CSF)-contacting neurons. NPY-immunoreactive, but not FMRF-immunoreactive, neurons were found in the stratum periventriculare of the optic tectum, and at the ventral border of the nucleus habenularis (adjacent to the nucleus dorsolateralis thalami). Neurons belonging to the nucleus of the nervus terminalis were FMRF-immunoreactive but not NPY-immunoreactive. The differential labeling indicates, as do our cross-absorption experiments, that the NPY and FMRFamide antisera recognize different epitopes. Thus, it is probable that NPY-like and FMRFamide-like substances occur in the same neurons in some brain regions. 相似文献
18.
Patricia Green Amelia Y. Hartenstein Volker Hartenstein 《Cell and tissue research》1993,273(3):583-598
We have used electron-microscopic studies, bromodeoxyuridine (BrdU) incorporation and antibody labeling to characterize the development of the Drosophila larval photoreceptor (or Bolwig's) organ and the optic lobe, and have investigated the role of Notch in the development of both. The optic lobe and Bolwig's organ develop by invagination from the posterior procephalic region. After cells in this region undergo four postblastoderm divisions, a total of approximately 85 cells invaginate. The optic lobe invagination loses contact with the outer surface of the embryo and forms an epithelial vesicle attached to the brain. Bolwig's organ arises from the ventralmost portion of the optic lobe invagination, but does not become incorporated in the optic lobe; instead, its 12 cells remain in the head epidermis until late in embryogenesis when they move in conjunction with head involution to reach their final position alongside the pharynx. Early, before head involution, the cells of Bolwig's organ form a superficial group of 7 cells arranged in a rosette pattern and a deep group of 5 cells. Later, all neurons move out of the surface epithelium. Unlike adult photoreceptors, they do not form rhabdomeres; instead, they produce multiple, branched processes, which presumably carry the photopigment. Notch is essential for two aspects of the early development of the visual system. First, it delimits the number of cells incorporated into Bolwig's organ. Second, it is required for the maintenance of the epithelial character of the optic lobe cells during and after its invagination. 相似文献
19.
E. A. Van der Zee B. Buwalda J. H. Strubbe A. D. Strosberg P. G. M. Luiten 《Cell and tissue research》1992,269(1):99-106
Summary Immunocytochemical application of the antimuscarinic acetylcholine receptor antibody M35 to pancreas tissue revealed the target areas for the parasympathetic nervous system. Immunoreactivity in the endocrine pancreas was much higher than that in the exocrine part. Moreover, the endocrine cells at the periphery of the islets of Langerhans displayed the highest level of immunoreactivity. Based on these findings in the mantle of the islets, two types of islets have been distinguished: type-I islets with intensely stained mantle cells, and type-II islets with a much lower concentration of these cells. On average, type-I islets were larger (244.8 m±6.1 SEM) than type-II islets (121.5 m±3.8 SEM). M35-immunoreactivity was present on the majority of D cells, which were characterized by their immunoreactivity to somatostatin [of 446 D cells 356 (79.8%) were M35-immunopositive]. However, only a small proportion of the intensely stained mantle cells belonged to the D cell population. Therefore, it is concluded that the majority of the intensely stained mantle cells represent glucagon-secreting A and/or pancreatic polypeptide-secreting F cells. The intensity of M35-immunoreactivity at the periphery and central core of the islets paralleled the density of cholinergic innervation, suggesting a positive correlation between the intensity of cholinergic transmission and the number of muscarinic acetylcholine receptors at the target structures. The present study further revealed some striking parallels for the muscarinic acetylcholine receptor characteristics between the (endocrine) pancreas and the central nervous system. 相似文献
20.
Dr. M. Vallarino A. Fasolo I. Ottonello I. Perroteau M. C. Tonon F. Vandesande H. Vaudry 《Cell and tissue research》1989,258(3):541-546
Summary The occurrence and localization of immunoreactive corticotropin-releasing factor (CRF) in the brain and pituitary of the elasmobranch fish Scyliorhinus canicula, were studied by means of specific radioimmunoassay and immunohistochemistry using the indirect immunofluorescence method. Brain and pituitary extracts showed a good cross-reactivity with the ovine CRF antiserum, but serial dilutions of tissue samples did not completely parallel the standard curve. Relatively high concentrations of CRF-like material were found within the pituitary, diencephalon, and telencephalon. CRF-like immunoreactive perikarya were observed in the preoptic nucleus and in the nucleus lateralis tuberis. Numerous immunoreactive cells appeared to be of the CSF-contacting type. CRF-like immunopositive fibers were seen to run through the hypothalamus within the ventro-medial floor of the infundibular region. A dense plexus of immunoreactive nerve endings terminated in the median eminence and the neurointermediate lobe of the pituitary. These results indicate that a neurosecretory system containing CRF-like immunoreactivity exists in the brain of elasmobranchs, a group of vertebrates which has diverged early from the evolutionary line leading to mammals. In addition, our data support the notion that a CRF-like molecule is involved in the regulation of corticotropic and melanotropic cell activity in this primitive species of fish. 相似文献