首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indirect double immunofluorescence labelling for eight neuropeptides in the pancreas of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of certain neuropeptides in the exocrine and endocrine pancreas. Immunoreactivity of substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), FMRFamide (FMRF), and galanin (GAL) was localized in nerve fibers distributed between the acini and around the duct system and vasculature of the exocrine pancreas. In these regions, CGRP-immunoreactive fibers were more numerous than those containing the other five peptides. Almost all SP fibers showed coexistence of SP with CGRP, and about one third of fibers also showed coexistence of SP with VIP, NPY, FMRF, and GAL. In the endocrine pancreas, SP, CGRP, VIP, and GAL were recognized in the nerve fibers around and within the islets of Langerhans, and VIP and GAL fibers were more numerous than SP and CGRP fibers. All CGRP fibers, and about half of the VIP and GAL fibers were immunoreactive for SP. NPY- and FMRF-immunoreactive cells were found at the periphery of the islets. These findings suggest that the exocrine and endocrine pancreatic functions of the bullfrog are under the control of peptidergic innervation.  相似文献   

2.
Summary It was previously demonstrated that the two chemically related peptides calcitonin gene-related peptide (CGRP) and islet amyloid polypeptide (IAPP) both occur in the pancreas. We have now examined the cellular localization of CGRP and IAPP in the rat and the mouse pancreas. We found, in both the rat and the mouse pancreas, CGRP-immunoreactive nerve fibers throughout the parenchyma, including the islets, with particular association with blood vessels. CGRP-immunoreactive nerve fibers were regularly seen within the islets. In contrast, no IAPP-immunoreactive nerve fibers were demonstrated in this location. Furthermore, in rat islets, CGRP immunoreactivity was demonstrated in peripherally located cells, constituting a major subpopulation of the somatostatin cells. Such cells were lacking in the mouse islets. IAPP-like immunoreactivity was demonstrated in rat and mouse islet insulin cells, and, in the rat, also in a few non-insulin cells in the islet periphery. These cells seemed to be identical with somatostatin/CGRP-immunoreactive elements. In summary, the study shows (1) that CGRP, but not IAPP, is a pancreati neuropeptide both in the mouse and the rat; (2) that a subpopulation of rat somatostatin cells contain CGRP; (3) that mouse islet endocrine cells do not contain CGRP; (4) that insulin cells in both the rat and the mouse contain IAPP; and (5) that in the rat, a non-insulin cell population apparently composed of somatostatin cells stores immunoreactive IAPP. We conclude that CGRP is a pancreatic neuropeptide and IAPP is an islet endocrine peptide in both the rat and the mouse, whereas CGRP is an islet endocrine peptide in the rat.  相似文献   

3.
To determine the origin of the ventral pancreas, a fate map of the ventral pancreas was constructed using DiI crystal or CM-DiI to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. First, the region lateral to the 7- to 9-somite level, which has been reported to contribute to the ventral pancreas, was shown to contribute mainly to the intestine or the dorsal pancreas. At the 10 somite stage (ss), the ventral pre-pancreatic cells reside laterally at the 2-somite level, at the lateral boarder of the somite. At this stage, however, the fate of these cells has not yet segregated and they contribute to the ventral pancreas and to the intestine or bile duct. The ventral pancreas fate segregated at the 17 ss; the cells residing at the somite boarder at the 4-somite level at the 17 ss were revealed to contribute to the ventral pancreas. Interestingly, the dorsal and the ventral pancreatic buds are different in both origin and function. These two pancreatic buds begin to fuse at day 7 (HH 30) of embryonic development. However, whereas the dorsal pancreas gives rise to both Insulin-expressing endocrine and Amylase-expressing exocrine cells, the ventral pancreas gives rise to Amylase-expressing exocrine cells, but not insulin-expressing endocrine cells before day 7 (HH 30) of embryonic development.  相似文献   

4.
Summary The pancreatic endocrine component was studied at different stages of development in the tadpoles of Rana temporaria. The material was embedded in Epon, and serial semithin and thin sections were made in order to correlate ultrastructural features and tinctorial traits of the endocrine cells. Serial semithin sections were also stained with the peroxidase-antiperoxidase immunocytochemical method and with silver impregnations for argyrophilia and argentaffinity. In early larvae (legless tadpoles), A and B cells are present. Both can be found within ducts and exocrine tissue or, more frequently, in cellular clusters among the ducts and acini. These primitive islets are solid structures, surrounded but not penetrated by capillaries. Mitoses were observed in A and B cells. In the following phase (tadpoles with hindlegs), D and pancreatic polypeptide-immunoreactive cells are also present, as well as numerous endocrine cells scattered among exocrine tissue. There is also a change in the vascular-insular pattern: capillaries not only surround but also penetrate the endocrine group. The structure of the endocrine pancreas in older tadpoles is similar. Tinctorial traits and ultrastructural features of endocrine cells are described, and the origin of primitive islets is discussed.  相似文献   

5.
Summary The development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.  相似文献   

6.
Summary Light-microscopic immunohistochemistry was used to localize insulin- and somatostatin-immunoreactive cells within developing endocrine pancreatic tissue of metamorphosing lampreys, Petromyzon marinus. The extrahepatic common bile duct and a portion of the intrahepatic bile duct develop into the caudal portion of the endocrine pancreas. The cranial pancreas is composed of follicles originating in the intestinal and diverticular epithelia, thus following the method of formation of pancreatic follicles from gut epithelium in larvae. In both the cranial and caudal portions, and in an intermediate cord of isolated follicles which connect these two major masses, insulin-immunoreactive cells appear first and are followed by cells showing somatostatin-immunoreactivity. In all stages of metamorphosis individual endocrine cells demonstrate immunoreactivity to a single hormone. Biliary atresia in lamprey may have some adaptive significance in providing cells that produce a caudal endocrine pancreas.Supported by NSERC of Canada grant No. A5945 and MRC of Canada grant No. MA8629 to JHY  相似文献   

7.
The primordial cord and the primitive, single and primordial islets present in the 3 earliest stages of the developing endocrine pancreas of sea bass were studied ultrastructurally. The primordial cord consisted of type I and II cells and was included in the gut. Besides these cell types, X cells were seen in the primitive islet. The single islet was made up of type I, II, III and IV cells. A correlation between these endocrine cell-types and cells previously identified immunocytochemically, was established. Type I, II, III and IV cells, correlated respectively with SST-25-, insulin-, SST-14- and glucagon-immunoreactive cells, and could be related to the D1, B, D2 and A cells, respectively, of older larvae and adult sea bass. Each cell type shows characteristic secretory granules from its first appearance. A progressive development of the organelles and an increase in the number and size of the secretory granules, whose ultrastructure also varied, was observed in the endocrine cells of the primordial cord and the succeeding islets. In 25-day-old larvae at the beginning of the fourth developmental stage, the primordial islet, the first ventral islet found, was close to a pancreatic duct and blood vessel, and consisted of type I and II cells whose ultrastructure was similar to that of the type I and II cells in the primordial cord. These data suggest a ductular origin for the pancreatic endocrine cells in the ventral pancreas. It is suggested that although endocrine cells undergo mitosis, their increase in number during the earliest development stages is principally due to the differentiation of surrounding cells.  相似文献   

8.
Summary Immunocytochemical application of the antimuscarinic acetylcholine receptor antibody M35 to pancreas tissue revealed the target areas for the parasympathetic nervous system. Immunoreactivity in the endocrine pancreas was much higher than that in the exocrine part. Moreover, the endocrine cells at the periphery of the islets of Langerhans displayed the highest level of immunoreactivity. Based on these findings in the mantle of the islets, two types of islets have been distinguished: type-I islets with intensely stained mantle cells, and type-II islets with a much lower concentration of these cells. On average, type-I islets were larger (244.8 m±6.1 SEM) than type-II islets (121.5 m±3.8 SEM). M35-immunoreactivity was present on the majority of D cells, which were characterized by their immunoreactivity to somatostatin [of 446 D cells 356 (79.8%) were M35-immunopositive]. However, only a small proportion of the intensely stained mantle cells belonged to the D cell population. Therefore, it is concluded that the majority of the intensely stained mantle cells represent glucagon-secreting A and/or pancreatic polypeptide-secreting F cells. The intensity of M35-immunoreactivity at the periphery and central core of the islets paralleled the density of cholinergic innervation, suggesting a positive correlation between the intensity of cholinergic transmission and the number of muscarinic acetylcholine receptors at the target structures. The present study further revealed some striking parallels for the muscarinic acetylcholine receptor characteristics between the (endocrine) pancreas and the central nervous system.  相似文献   

9.
Summary In Bufo bufo at stage III6 the first endocrine islets appear in the part of the pancreas corresponding to the dorsal anlage. At stage IV2, 5 days later, the pancreatic duct develops and new islets arise by budding off from the ductal epithelium. The ultrastructural study of the secretory granules morphology of endocrine cells has distinguished four different cell types: B-cells (stage III9), A-cells (stage IV3), D-cells (stage IV3) and a fourth type not yet identified (stage IV3). By immunocytology insulin and corticotropin-releasing factor (CRF) cells have been demonstrated at stage III9, and glucagon and somatostatin cells at stage IV1. Lastly, endocrine islets can be homogeneous (predominantly containing insulin cells, rarely glucagon cells) or heterogeneous (insulin cells at the centre and glucagon or somatostatin cells at the periphery). Hypotheses are put forward for the origin and the constitution of the different generations of endocrine islets and isolated cells.  相似文献   

10.
Summary The localisation and distribution of 10 vertebrate-derived neuropeptides in the earthworm, Lumbricus terrestris, have been determined by an indirect immunofluorescence technique. The peptides are pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), neuropeptide Y (NPY), glucagon (C-terminal), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), gastrinreleasing peptide (GRP), calcitonin gene-related peptide (CGRP), neurotensin (NT), and met-enkephalin. For 6 of the peptides — PYY, NPY, PHI, glucagon, GRP and CGRP — this is the first demonstration of their presence in any annelid, and NT has not previously been described in an oligochaete. Cell bodies and nerve fibres immunoreactive to the 10 peptides occur throughout the CNS. In the PNS, epidermal sensory cells displayed immunoreactivities to PP and PYY, and PP-, PYY-, NPY-, PHI- and GRP-like immunoreactivities occurred in nerve fibres supplying the main body muscles. Nerve fibres immunoreactive to PP and PYY are also associated with the innervation of the gut (pharynx, oesophageal glands, and mid and posterior regions of the intestine). No endocrine cells immunoreactive for any of the antisera tested could be identified in the gut epithelium, suggesting that dual location of peptides in the brain and gut epithelium is a phenomenon that occurred at a later stage in evolution. No immunoreactive elements were detected in any of the organs and ducts of the reproductive and excretory systems.  相似文献   

11.
Recent studies have suggested that the zebrafish pancreas develops from a single pancreatic anlage, located on the dorsal aspect of the developing gut. However, using a transgenic zebrafish line that expresses GFP throughout the endoderm, we report that, in fact, two pancreatic anlagen join to form the pancreas. One anlage is located on the dorsal aspect of the developing gut and is present by 24 h postfertilization (hpf), the second anlage is located on the ventral aspect of the developing gut in a position anterior to the dorsal anlage and is present by 40 hpf. These two buds merge by 52 hpf to form the pancreas. Using heart and soul mutant embryos, in which the pancreatic anlagen most often do not fuse, we show that the posterior bud generates only endocrine tissue, while the anterior bud gives rise to the pancreatic duct and exocrine cells. Interestingly, at later stages, the anterior bud also gives rise to a small number of endocrine cells usually present near the pancreatic duct. Altogether, these studies show that in zebrafish, as in the other model systems analyzed to date, the pancreas arises from multiple buds. To analyze whether other features of pancreas development are conserved and investigate the influence of surrounding tissues on pancreas development, we examined the role of the vasculature in this process. Contrary to reports in other model systems, we find that, although vascular endothelium is in contact with the posterior bud throughout pancreas development, its absence in cloche mutant embryos does not appear to affect the early morphogenesis or differentiation of the pancreas.  相似文献   

12.
用免疫组织化学ABC法,研究不同生长期中,绍兴麻鸭胰腺脾叶内D细胞的形态分布;用显微图像分析系统测定D细胞的积分光密度值,并求各时期D细胞的平均总积分光密度值,再作统计学分析。结果表明:D细胞多呈三角或多面形,具多种形态的胞质突起。常成群散在分布于胰岛内,少数零散位于胰腺中。D细胞积分光密度值的年龄变化是7—42日龄为生长发育峰期,以后呈缓慢下降趋势,其中7-14日龄为增长高峰期(呈现极显著差异)。本文显示了胰腺D细胞在生长发育期的变化规律,并讨论了该变化规律与绍兴麻鸭胃腺D细胞及胰岛B细胞变化规律间的关系。为胃肠胰内分泌系统的发育提供动态变化的基础资料。  相似文献   

13.
Endocrine cells exhibiting immunoreactivity to FMRFamide-like, LPLRFamide-like, neuropeptide Y(NPY)-like and peptide YY(PYY)-like peptides were found in the periphery of the Brockmann bodies of the cod, Gadus morhua, and rainbow trout, Oncorhynchus mykiss. No immunoreactivity or very weak labelling was found with antisera to pancreatic polypeptide (PP). Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was found in nerve fibres, whereas labelling with VIP antiserum in endocrine cells disappeared after preincubation with nonimmune serum. There were always more immunoreactive cells in the rainbow trout than in the cod. No immunoreactivity could be seen with antisera to gastrin/cholecystokinin (CCK) or enkephalin. Double-labelling studies were performed to study the colocalization of the peptides in peripheral endocrine cells. Cells immunoreactive to NPY were also labelled with antisera to FMRFamide, LPLRFamide and PYY. The co-localization pattern of NPY varied; in some Brockmann bodies, a population of the immunoreactive cells showed co-localization and others contained NPY-like immunoreactivity only, whereas in other Brockmann bodies, all NPY-labelled cells also contained FMRFamide-like, LPLRFamide-like and PYY-like immunoreactivity. Cells immunoreactive to PYY similarly contained FMRFamide-like, LPLRFamide-like and NPY-like immunoreactivity, comparable to the patterns observed with NPY. Glucagon-like immunoreactivity was found at the periphery of the Brockmann bodies. A subpopulation of the glucagon-containing cells contained NPY-like immunoreactivity. PYY-like immunoreactivity was also found co-localized with glucagon-like immunoreactivity, as were FMRFamide-like and LPLRFamide-like immunoreactivity. Therefore, either NPY-like and PYY-like immunoreactivity together with FMRFamide-like and LPLRFamide-like immunoreactivity occur in the same endocrine cells of the Brockmann body of the cod and rainbow trout, or a hybrid NPY/PYY-like peptide recognized by both NPY and PYY antisera is present in the Brockmann body.  相似文献   

14.
Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3+ precursor cells. In addition, in the pancreas most Ngn3+ cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3+ cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1+ cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1+ cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.  相似文献   

15.
Summary Immunohistochemistry was used to localize regulatory peptides in endocrine cells and nerve fibres in the pancreas of two species of elasmobranchs (starry ray,Raja radiata and spiny dogfish,Squalus acanthias), and in the Brockmann bodies of four teleost species (goldfish,Carassius auratus, brown troutSalmo trutta, rainbow trout,Oncorhynchus mykiss and cod,Gadus morhua). In the elasmobranchs, the classical pancreatic hormones somatostatin, glucagon and insulin were present in endocrine cells of the islets. In addition, endocrine cells were labelled with antisera to enkephalins, FMRF-amide, gastrin/cholecystokinin-(CCK)/caerulein, neurotensin, neuropeptide Y (NPY), and peptide YY (PYY). Nerve fibres were demonstrated with antisera against bombesin, galanin and vasoactive intestinal polypeptide (VIP). These nerve fibres innervated the walls of blood vessels, in the exocrine as well as the endocrine tissue. In the four teleost species immunoreactivity to somatostatin, insulin and glucagon was intense in the Brockmann bodies. Cells were labelled with antisera to enkephalin, neurotensin, FMRFamide, gastrin/CCK/ caerulein, NPY, PYY and VIP. Only a few nerve fibres were found with antisera against dopamine--hydroxylase (DBH, cod), enkephalin (met-enkephalin-Arg-Phe, cod), bombesin (cod), gastrin/CCK/caerulein (cod) and VIP. Galanin-like-immunoreactive fibres were numerous in the Brockmann bodies of all teleosts examined. Immunoreactivity to calcitonin gene-related peptide (CGRP), substance P, tyrosine hydroxylase (TH), and phenyl-N-methyl transferase (PNMT) could not be found in any of the species studied.  相似文献   

16.
Summary The endocrine pancreas of the Australian fattailed dunnart, Sminthopsis crassicaudata, was investigated by means of electron-microscopic immunocytochemistry using the protein A-gold technique on London resin (LR) white-embedded tissue. The primary antibodies used were raised against insulin, glucagon, somatostatin and pancreatic polypeptide. The morphology of the secretory granules differed in the four cell types. The insulin cells are pleomorphic, and the secretory granules composed of an electron-dense core surrounded by an electron-lucen halo. The glucago cells possess granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells have large, less dense secretory granules. The pancreatic polypeptide cells show small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborated by immunocytochemical data at the light-or preferably electron-microscopic level. Recent developments in immuno-electron-microscopic techniques have contributed to a better knowledge of cells responsible for the secretion of a wide variety of hormones, as in this study.  相似文献   

17.
The preproglucagon gene encodes, in addition to glucagon, two smaller peptides with structural similarity: glucagon-like peptides 1 and 2. Glucagon-like peptide 1 (GLP-1) 7–36 amide is the most powerful incretin candidate. In the present study, GLP-1 immunoreactivity was investigated in tissue specimens of various types of gastroenteropancreatic tumors, and the serum-levels of GLP-1 were assayed. Immunohistochemical staining of 88 tumors revealed GLP-1 immunoreactivity in 17 neoplasias (19.3 %), viz., in 7 out of 33 non-functioning tumors, 4 out of 20 gastrinomas, 4 out of 13 insulinomas, 1 out of 3 vasoactive-intestinal-polypeptide (VIP)omas and 1 adrenocorticotropic-hormone (ACTH)-producing tumor. In these tumors, GLP-1-immunoreactive cells were distributed either diffusely, arranged in clusters, or as single cells. All GLP-1-positive tumors were immunoreactive for glucagon or glicentin, 10 tumors were immunoreactive for pancreatic polypeptide, and 8 tumors for insulin. Ultrastructural analysis of 8 GLP-1-positive tumors, with the immunogold technique, demonstrated GLP-1 immunoreactivity mainly in cells resembling the A-cells of the pancreas or the L-cells of the gut. Of the 17 GLP-1-immunoreactive tumors, 15 were primarily located in the pancreas. Additionally, 2 non-functioning tumors of the rectum were GLP-1 immunoreactive. Five tumors were GLP-1 immunoreactive from 9 patients with multiple endocrine neoplasia I syndrome. Patients with GLP-1-immunoreactive tumors were characterized by a significantly lower rate of distant metastases (P<0.01) and a higher rate of curative resections (P<0.05). In 2 out of 22 patients, elevated serum-levels of GLP-1 were found: one patient with a vasoactive-intestinal-polypeptide (VIP)oma and 1 patient with a non-functioning tumor. This indicates that GLP-1 might be secreted at least by a few gastroenteropancreatic endocrine tumors.  相似文献   

18.
Summary The occurrence and distribution of endocrine cells and nerves were immunohistochemically demonstrated in the gut and rectal gland of the ratfish Chimaera monstrosa (Holocephala). The epithelium of the gut mucosa revealed open-type endocrine cells exhibiting immunoreactivity for serotonin (5HT), gastrin/cholecystokinin (CCK), pancreatic polypeptide (PP)/FMRFamide, somatostatin, glucagon, substance P or gastrin-releasing peptide (GRP). The rectum contained a large number of closed-type endocrine cells in the basal layer of its stratified epithelium; the majority contained 5HT- and GRP-like immunoreactivity in the same cytoplasm, whereas others were immunoreactive for substance P. The rectal gland revealed closed-type endocrine cells located in the collecting duct epithelium. Most of these contained substance P-like immunoreactivity, although some reacted either to antibody against somatostatin or against 5HT. Four types of nerves were identified in the gut and the rectal gland. The nerve cells and fibers that were immunoreactive for vasoactive intestinal peptide (VIP) and GRP formed dense plexuses in the lamina propria, submucosa and muscular layer of the gut and rectal gland. A sparse network of gastrin- and 5HT-immunoreactive nerve fibers was found in the mucosa and the muscular layer of the gut. The present study demonstrated for the first time the occurrence of the closed-type endocrine cells in the mucosa of the rectum and rectal gland of the ratfish. These abundant cells presumably secrete 5HT and/or peptides in response to mechanical stimuli in the gut and the rectal gland. The peptide-containing nerves may be involved in the regulation of secretion by the rectal gland.  相似文献   

19.
20.
Summary Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities. These results are consistent with the hypothesis that peptides having significant sequence homology with human neuropeptide Y and porcine neuropeptide Y are present in the nerve fibers that permeate the islet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号