首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most bacteria lead lives of quiet desperation, so they sleep. By sleeping, bacteria survive ubiquitous stress, such as antibiotics, and can resuscitate to reconstitute infections. As for other nearly universal and highly regulated processes such as biofilm formation, in persistence, a small population of cells have an elegantly-regulated pathway to become dormant. By inactivating their ribosomes, persister cells sleep through stress and resuscitate once (i) the stress is removed, (ii) nutrients are presented and (iii) ribosome content reaches a threshold. During stress, cells often become spheroid and die, becoming hollow, membrane-enclosed vessels. How cellular content is lost is unclear, but it is obvious that these ‘cell shells’ are dead; i.e., ‘There's no there there’. Critically, due to their intact membranes, the shells appear with membrane-impenetrant stains as ‘viable’ particles. Unfortunately, the microbiology field of ‘viable but non-culturable cells’ (VBNCs), though important for demonstrating the existence of dormant bacteria as a result of myriad stress states, has often mistaken these non-viable shells as viable particles that mysteriously may be reborn, when an appropriate incantation is made. We argue here, based on experimental data, that if resuscitation occurs, it is the persister (always-viable) cell population that revives, rather than the cell husks, which are dead.  相似文献   

2.
3.
4.
Vibrio cholerae O1 can enter a state in which they remain viable but are non-culturable. Presumably, such bacteria can be pathogenic if they retain the capacity to proliferate in the human intestine following ingestion. Two groups of volunteeers were given inocula containing viable but non-culturable V. cholerae O1 of the attenuated vaccine strain CVD 101 (viable CVD 101 organisms readily colonize the human intestine). Volunteers in one of the two groups excreted viable CVD 101, demonstrating that, in the environment of the human intestine, previously non-culturable vibrios can regain the capacity to multiply. These observations support the proposition that viable but non-culturable bacterial enteropathogens may pose a potential threat to health.  相似文献   

5.
AIMS: To investigate the presence of viable but non-culturable Listeria monocytogenes during survival on parsley leaves under low relative humidity (RH) and to evaluate the ability of L. monocytogenes to recover from VBNC to culturable state under satured humidity. METHODS AND RESULTS: Under low RH (47-69%) on parsley leaves, the initial number of L. monocytogenes populations counted on non selective media (10(9) L. monocytogenes per leaf on TSA) was reduced by 6 log10 scales in 15 days, whereas number of viable L. monocytogenes counted under the microscope was reduced by 3-4 log10 scales, indicating the presence of VBNC cells. This was demonstrated on three L. monocytogenes strains (EGDe, Bug 1995 and LmP60). Changing from low to 100% RH permitted an increase of the culturable counts of L. monocytogenes and this growth was observed only when residual culturable cells were present. Moreover, VBNC L. monocytogenes inoculated on parsley leaves did not become culturable after incubation under 100% RH. CONCLUSIONS: Dry conditions induced VBNC L. monocytogenes on parsley leaves but these VBNC were likely unable to recover culturability after transfer to satured humidity. SIGNIFICANCE AND IMPACT OF STUDY: Enumeration on culture media presumably under-estimates the number of viable L. monocytogenes on fresh produce after exposure to low RH.  相似文献   

6.
An environmental isolate of Salmonella typhi was chromosomally marked with a gfp gene encoding green fluorescence protein (GFP) isolated from Aequorea victoria. The hybrid transposon mini-Tn5 gfp was transconjugated from E. coli to S. typhi, resulting in constitutive GFP production. The survival of S. typhi GFP155 introduced into groundwater and pond water microcosms was examined by GFP-based plate counts, total cell counts, and direct viable counts. A comparison between GFP-based direct viable counts and plate counts was a good method for verifying the viable, but non-culturable (VBNC), state of S. typhi. The entry into a VBNC state of S. typhi was shown in all microcosms. S. typhi survived longer in groundwater than in pond water as both a culturable and a VBNC state.  相似文献   

7.
Abstract Kanamycin-resistant Pseudomonas fluorescens DF57-3 cells (Tn5 modified) inoculated in soil microcosms rapidly lost their culturability, as defined by visible colony formation on Kings B agar supplemented with kanamycin. Thus, after 40 days only 0.02–0.35% of the initial inoculum was culturable. A microcolony epifluorescence technique was developed to determine the viable, but non-culturable subpopulation. A suspension of bacteria from the soil was prepared in salt solution after a sonication procedure and a sample was filtered onto a 0.2 μm Nuclepore filter. The filter was then placed for 3–4 days on the surface of Kings B agar before staining with acridine orange for epifluorescence microscopy. By staining and washing the filters carefully, disruption of microcolonies could be avoided. A majority of the microcolonies resulted from 2–3 cell divisions during the first 2 days of the incubation period, after which the cell divisions stopped. These microcolonies were taken to represent a population of viable, but non-culturable cells and comprised about 20% of the initial inoculum. A similar recovery was obtained when the filters were incubated on the surface of citrate minimal medium or soil extract medium. A few microcolonies showed continued growth on the filters, however, and their number corresponded well with that of visible macrocolonies. Observation by microscopy of a few (2–3) cell divisions (microcolony epifluorescence technique) is proposed for determination of subpopulations of viable, but non-culturable bacteria in soil.  相似文献   

8.
Recovery of viable but non-culturable Campylobacter jejuni.   总被引:19,自引:0,他引:19  
Suspensions of Campylobacter jejuni became non-culturable after storage in sterilized pond water at 4 degrees C for periods between 18 and 28 d, depending on the strain. Suspensions of four strains of C. jejuni that had been in water for 6 weeks, and shown to be non-culturable, were fed to suckling mice. Colonization of mice was established with two of the strains and failed with the other two strains. Examination of these suspensions under the electron microscope showed some cocci having the appearance of being viable, but most cocci and all remaining spiral forms showed extensive degeneration. The results indicate that non-culturable coccal forms of C. jejuni are capable of infecting mice but that this property may differ between strains.  相似文献   

9.
Morphology of viable but non-culturable Vibrio cholerae was monitored for 2 years by scanning and transmission electron microscopy. Morphological changes included very small coccoid forms, after extended incubation at 4 degrees C and room temperature, and sequential transformation from curved rods to irregular (approximately 1 microm) rods to approximately 0.8 microm coccoid cells and, ultimately, to tiny coccoid forms (0.07-0.4 microm). Irregular rod-shaped and coccoid cells were equally distributed in microcosms during the first 30-60 days of incubation at both temperatures, but only coccoid cells were observed after incubation for 60 days at 4 degrees C. When V. cholerae O1 and O139, maintained for 30-60 days at both temperatures, were heated to 45 degrees C for 60 s, after serial passage through 0.45 microm and 0.1 microm filters, and plating on Luria-Bertania (LB) agar, only cells larger than 1 microm yielded colonies on LB agar. Approximately 0.1% of heat-treated cultures were culturable. Cell division in the smallest coccoid cells was observed, yielding daughter cells of equal size, whereas other coccoid cells revealed bleb-like, cell wall evagination, followed by transfer of nuclear material. Coccoid cells of V. cholerae O1 and O139 incubated at 4 degrees C for more than 1 year remained substrate responsive and antigenic.  相似文献   

10.
11.
12.
Viable but nonculturable bacteria in drinking water   总被引:6,自引:0,他引:6  
Klebsiella pneumoniae, Enterobacter aerogenes, Agrobacterium tumefaciens, Streptococcus faecalis, Micrococcus flavus, Bacillus subtilis, and Pseudomonas strains L2 and 719 were tested for the ability to grow and maintain viability in drinking water. Microcosms were employed in the study to monitor growth and survival by plate counts, acridine orange direct counts (AODC), and direct viable counts (DVC). Plate counts dropped below the detection limit within 7 days for all strains except those of Bacillus and Pseudomonas. In all cases, the AODC did not change. The DVC also did not change except that the DVC, on average, were ca. 10-fold lower than the AODC.  相似文献   

13.
细菌有活力但不可培养状态及其机制研究进展   总被引:1,自引:1,他引:0  
有活力但不可培养(viable but non-culturable,VBNC)状态是细菌遭遇逆境时进入的一种特殊状态,该状态下的菌体在条件适宜时可复苏并恢复其致病性,被认为是细菌躲避不良环境的一种生存策略。VBNC状态菌体对人类医学和工农业生产具有巨大的潜在威胁,开展关于VBNC状态的检测及诱导、复苏及其机制研究可为减少或避免该状态细菌的危害提供理论基础。本文简要综述了细菌VBNC状态在诱导、复苏及致病性等方面的研究进展,并结合本实验室及国内外相关团队近年来在植物病原细菌VBNC状态研究中的结果,详细总结了VBNC状态细菌的形成和复苏机制,对植物病原细菌在环境胁迫下的存活机制、病害田间初侵染来源分析及VBNC状态菌体在病害循环中的作用等相关研究具有重要参考意义。  相似文献   

14.
AIMS: The viable but non-culturable (VBNC) state is a survival strategy adopted by bacteria when exposed to environmental stress. When in this state bacteria are no longer culturable on conventional growth media, but cells display metabolic activity and maintain pathogenicity factors/genes and, in some cases, resuscitation from the VBNC state has been shown. This state has been described for both human pathogens and faecal pollution indicators. In this study, we present evidence for entry of different enterococcal species into the VBNC state in an oligotrophic microcosm. METHODS AND RESULTS: The duration of the viability of the cells in the VBNC state was measured either by detecting the presence of pbp5 mRNA or by quantifying their resuscitation capability. Enterococci showed different behaviours. Enterococcus faecalis and Enterococcus hirae entered into the VBNC state within 2 weeks and remained in that state for 3 months. In the experiments described the resuscitation rate was 1:10 000 cells as soon as the cells entered the VBNC state and decreased gradually to undetectable levels over the following 3 months. Enterococcus faecium, however, remained culturable up to 4 weeks. After this time period, when the population was totally unculturable, the cells were far less resuscitable than other enterococci and only over a narrow time interval (2 weeks). CONCLUSIONS: These results suggest that Ent. faecalis and Ent. hirae enter the VBNC state but that Ent. faecium, in an oligotrophic laboratory environment, tends to die instead of entering the VBNC state. SIGNIFICANCE AND IMPACT OF THE STUDY: These experiments may mimic what happens when enterococci are released by humans and animals in natural environments.  相似文献   

15.
The viable but non-culturable state in the human pathogen Vibrio vulnificus   总被引:7,自引:0,他引:7  
Abstract Genes encoding paniculate methane monooxygenase and ammonia monooxygenase share high sequence identity. Degenerate oligonucleotide primers were designed, based on regions of shared amino acid sequence between the 27-kDa polypeptides, which are believed to contain the active sites, of particulate methane monooxygenase and ammonia monooxygenase. A 525-bp internal DNA fragment of the genes encoding these polypeptides ( pmoA and amoA ) from a variety of methanotrophic and nitrifying bacteria was amplified by PCR, cloned and sequenced. Representatives of each of the phylogenetic groups of both methanotrophs (α- and γ-Proteobacteria) and ammonia-oxidizing nitrifying bacteria (β-and y-Proteobacteria) were included. Analysis of the predicted amino acid sequences of these genes revealed strong conservation of both primary and secondary structure. Nitrosococcus oceanus AmoA showed higher identity to PmoA sequences from other members of the γ-Proteobacteria than to AmoA sequences. These results suggest that the particulate methane monooxygenase and ammonia monooxygenase are evolutionarily related enzymes despite their different physiological roles in these bacteria.  相似文献   

16.
Viable but nonculturable bacteria in drinking water.   总被引:2,自引:7,他引:2       下载免费PDF全文
Klebsiella pneumoniae, Enterobacter aerogenes, Agrobacterium tumefaciens, Streptococcus faecalis, Micrococcus flavus, Bacillus subtilis, and Pseudomonas strains L2 and 719 were tested for the ability to grow and maintain viability in drinking water. Microcosms were employed in the study to monitor growth and survival by plate counts, acridine orange direct counts (AODC), and direct viable counts (DVC). Plate counts dropped below the detection limit within 7 days for all strains except those of Bacillus and Pseudomonas. In all cases, the AODC did not change. The DVC also did not change except that the DVC, on average, were ca. 10-fold lower than the AODC.  相似文献   

17.
Colony counting and DEFT did not give the same results when wine micro-organisms were enumerated. Both methods were used to monitor the population of acetic acid bacteria (AAB) and lactic acid bacteria (LAB) during wine storage. Results suggest that part of the populations had reached a viable but non-culturable (VBNC) state. These cells were unable to produce colonies but could hydrolyse fluorescent esters and could be counted by DEFT. For AAB, O2 deprivation quickly induced this state. Recovery from this state was very rapid as soon as O2 was available. The response was not so clear for LAB during wine storage. However, a similar state was induced by sulfiting. Moreover, filtration of wine stored in barrels and contaminated by Brettanomyces, AAB and LAB demonstrated that cell size was not homogeneous. Cells which remained in wine after several weeks could pass through a 0.45-microm membrane. However, when they re-entered a growing phase, they were again retained by membrane filtration. During and after the decline phase, wine micro-organisms might survive as smaller cells in a VBNC state.  相似文献   

18.
微生物VBNC状态形成及复苏机制   总被引:3,自引:1,他引:2  
张硕  丁林贤  苏晓梅 《微生物学报》2018,58(8):1331-1339
99%以上的微生物因处于活的但非可培养(viable but non-culturable,VBNC)状态而无法分离培养。复苏促进因子(resuscitation-promoting factors,Rpfs)是培养获取VBNC菌的最重要突破。结合课题组近十余年从环境功能视角利用Rpf复苏培养VBNC菌的研究,本文在阐述微生物VBNC状态的形成及复苏进展的基础上,从VBNC菌形成及复苏过程出发,探究"探索因子"与群体感应的内在关系。并总结了课题组利用Rpf所复苏培养的具有潜在环境功能的VBNC菌种。本论文将为揭示微生物VBNC状态的形成及复苏机制提供新的思路,并为认识和重新评价Rpf法复苏培养VBNC菌在污染环境微生物修复中的作用提供理论依据。  相似文献   

19.
Francisella tularensis is a small Gram-negative bacterium that causes tularemia in animals and man. The disease can be transmitted by handling of infected animals, by contaminated dust, by insect vectors, or by drinking contaminated water. In the present study cells of F. tularensis were subjected to extended storage in cold water devoid of carbon sources. Total cell counts remained constant throughout a 70-day period and beyond, while plate counts decreased to an undetectable level after 70 days. Attempts to resuscitate the cells were unsuccessful. Quantitative PCR targeting the 16S rDNA of F. tularensis showed an increase in variability after 25 days and the signal was lost after 45 days. Metabolic activity, measured by accumulation of rhodamine 123, declined to approximately 35% after a 140-day period. Analyses of substrate responsiveness of cells stored for 140 days in cold water showed that approximately 30% of the population increased in size after incubation in rich medium in the presence of nalidixic acid. Approximately 10(5) of these cells were injected intraperitoneally into mice. No signs or symptoms of tularemia were observed during 3 weeks. In addition, there was no evidence of stimulation of lymphocytes with F. tularensis as recall antigen. In conclusion, viable but non-culturable cells of F. tularensis are avirulent in mice, giving new insight into the ecological niche of this bacterium.  相似文献   

20.
Flow cytometric signatures (i.e., light scatter, red and green fluorescence) were obtained for the active but non-culturable (ABNC) cells of E. coli and a coliform isolate H03N1, in seawater microcosms using BacLight, a live-dead assay kit from Molecular Probes (Eugene/Portland, OR). Previous studies have reported that there are two major adaptations, which cells undergo during the formation of ABNC states: cell wall toughening and DNA condensation. Therefore, we hypothesized that the matured ABNC forms should be more resistant to extreme temperature treatments (i.e., by freezing in liquid nitrogen and thawing at room temperature) than the normal and transition populations. It was shown that the membrane-compromised cells (comprising of normal wild-type and dead cells which are less resistant to rapid freeze thaw) could be differentiated from the matured ABNC using BacLight staining and fluorescence detection by flow cytometry. The population of ABNC cells, which could not be cultured using m-FC media (for the enumeration of fecal coliforms), was resuscitated in phosphate buffer saline followed by growth in Luria broth. Flow cytometry was thus able to detect and differentiate the ABNC cells against a mixed population comprising of culturable cells, transition populations, and dead cells. The results also showed that the formation of ABNC is as early as 2 days in seawater microcosms. By directly comparing the coliform levels enumerated by the BacLight based flow cytometry assays and m-FC technique, it was shown that the presence of coliforms can be undetected by the membrane filtration method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号