首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human high affinity IgE receptor (FcepsilonRI) is a central component of the allergic response and is expressed as either a trimeric alphagamma2 or tetrameric alphabetagamma2 complex. It has been previously described that the cytoplasmic domain (CD) of the alpha-chain carries a dilysine motif at positions -3/-7 from the C terminus that functions in intracellular retention prior to assembly with other FcepsilonRI subunits. In this report we have further explored the role of the -3/-7 dilysine signal in controlling steady-state alpha-chain transport by mutational analysis and found little surface expression of a -3/-7 dialanine alpha-chain mutant but significant Golgi localization. We compared the transport properties of a series of alpha-chain cytoplasmic domain truncation mutants and observed that truncation mutants lacking 23 or more C-terminal residues showed a dramatic increase in steady-state transport suggesting a role for the membrane-proximal CD sequence in alpha-chain retention. By performing alanine-scanning mutagenesis we identified a dilysine sequence (Lys(212)-Lys(216)) proximal to the transmembrane domain (TMD) that is important for both alpha-chain cell-surface expression and intracellular stability. Furthermore, co-mutation of the Lys(212)-Lys(216) residues with the -3/-7 dilysine signal produced a dramatic increase in alpha-chain surface expression that was further increased by co-mutation of the lone charged residue (Asp(192)) in the TMD thereby defining three regions that function to regulate alpha-chain transport and in a highly synergistic manner.  相似文献   

2.
The high-affinity IgE receptor (FcepsilonRI) on mast cells and basophils consists of a ligand-binding alpha-chain and two kinds of signaling chains, a beta-chain and disulfide-linked homodimeric gamma-chains. Crosslinking by multivalent antigen results in the aggregation of the bound IgE/alpha-chain complexes at the cell surface, triggering cell activation, and subsequent internalization through coated pits. However, the precise topographical alterations of the signaling beta- and gamma-chains during stimulation remain unclarified despite their importance in ligand binding/signaling coupling. Here we describe the dynamics of FcepsilonRI subunit distribution in rat basophilic leukemia cells during stimulation as revealed by immunofluorescence and immunogold electron microscopy. Immunolocalization of beta- and gamma-chains was homogeneously distributed on the cell surfaces before stimulation, while crosslinking with multivalent antigen, which elicited optimal degranulation, caused a distinct aggregation of these signaling chains on the cell membrane. Moreover, only gamma- but not beta-chains were aggregated during the stimulation that evoked suboptimal secretion. These findings suggest that high-affinity IgE receptor beta- and gamma-chains do not co-aggregate but for the most part form homogenous aggregates of beta-chains or gamma-chains after crosslinking.  相似文献   

3.
A variant of the high affinity IgE receptor FcepsilonRI, which is composed of alpha- and gamma-chains without the beta-chain, is expressed on human APC, such as dendritic cells, and has been suggested to facilitate Ag uptake through IgE and hence to facilitate Ag presentation to T cells. The level of FcepsilonRI on these cells is correlated with the serum IgE concentration, suggesting IgE mediates the up-regulation of the alphagamma2-type FcepsilonRI. The IgE-mediated FcepsilonRI up-regulation on mast cells and basophils has been shown to enhance the ability of these cells to release chemical mediators and cytokines that are responsible for allergic inflammatory reactions. Here, to elucidate the mechanism controlling FcepsilonRI expression, we compared two structurally related Ig receptors, human FcepsilonRI and FcgammaRIIIA, which carry different alpha-chains but the same gamma-chains. The half-life of FcepsilonRI on the cell surface was short unless it bound IgE, whereas FcgammaRIIIA was stably expressed without IgG binding. Shuffling of the non Ig-binding portions of the FcepsilonRIalpha and FcgammaRIIIAalpha chains revealed that the stalk region was critical in determining the difference in their stability and ligand-induced up-regulation. Unexpectedly, analyses with added or deleted amino acids in the stalk region strongly suggested that the length rather than the amino acid sequence of the stalk region was of major importance in determining the different stabilities of FcepsilonRI and FcgammaRIIIA on the cell surface. This finding provides new insights into the mechanism regulating surface FcepsilonRI expression.  相似文献   

4.
The structural analysis of monoclonal antibodies (mAbs) against the alpha subunit of the high affinity IgE receptor (FcepsilonRIalpha) is an alternative approach to obtaining information for the design of inhibitors that will block complementary interaction between IgE and FcepsilonRIalpha and to analyzing the various biological effects induced by anti-FcepsilonRIalpha autoantibodies in chronic urticaria. In this study, epitopes for mouse anti-human FcepsilonRIalpha mAbs and primary structures of variable regions of the mAbs were analyzed. Three mAbs inhibitory for IgE-binding reacted to the deletion mutants of FcepsilonRIalpha containing the whole second immunoglobulin-like domain as well as IgE did. On the other hand, two uninhibitory mAbs reacted to those containing the whole first immunoglobulin-like domain. The cDNAs for variable regions of the five mAbs were cloned and sequenced. Two inhibitory mouse/human chimeric antibodies were expressed in COS7 cells and bound to Chinese hamster ovary transfectant cells expressing FcepsilonRI (CHO/alphabetagamma), and these inhibited the binding of IgE to CHO/alphabetagamma cells.  相似文献   

5.
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. This study reports the crystallographic structure of an aIF2alphagamma heterodimer from Sulfolobus solfataricus bound to Gpp(NH)p-Mg(2+). aIF2gamma is in a closed conformation with the G domain packed on domains II and III. The C-terminal domain of aIF2alpha interacts with domain II of aIF2gamma. Conformations of the two switch regions involved in GTP binding are similar to those encountered in an EF1A:GTP:Phe-tRNA(Phe) complex. Comparison with the EF1A structure suggests that only the gamma subunit of the aIF2alphagamma heterodimer contacts tRNA. Because the alpha subunit markedly reinforces the affinity of tRNA for the gamma subunit, a contribution of the alpha subunit to the switch movements observed in the gamma structure is considered.  相似文献   

6.
It has been shown that IgE binding to FcepsilonRI on mast cells results in increased FcepsilonRI expression, which in turn enhances IgE-dependent chemical mediator release from mast cells. Therefore, prevention of the IgE-mediated FcepsilonRI up-regulation would be a promising strategy for management of allergic disorders. However, the mechanism of IgE-mediated FcepsilonRI up-regulation has not been fully elucidated. In this study, we analyzed kinetics of FcepsilonRI on peritoneal mast cells and bone marrow-derived mast cells. In the presence of brefeldin A, which prevented transport of new FcepsilonRI molecules to the cell surface, levels of IgE-free FcepsilonRI on mast cells decreased drastically during culture, whereas those of IgE-bound FcepsilonRI were stable. In contrast, levels of FcgammaRIII on the same cells were stable even in the absence of its ligand, indicating that FcepsilonRI alpha-chain, but not beta- and gamma-chains, was responsible for the instability of IgE-free FcepsilonRI. As far as we analyzed, there was no evidence to support the idea that IgE binding to FcepsilonRI facilitated synthesis and/or transport of FcepsilonRI to the cell surface. Therefore, the stabilization and accumulation of FcepsilonRI on the cell surface through IgE binding appears to be the major mechanism of IgE-mediated FcepsilonRI up-regulation.  相似文献   

7.
We investigated how asparagine (N)-linked glycosylation affects assembly of acetylcholine receptors (AChRs) in the endoplasmic reticulum (ER). Block of N-linked glycosylation inhibited AChR assembly whereas block of glucose trimming partially blocked assembly at the late stages. Removal of each of seven glycans had a distinct effect on AChR assembly, ranging from no effect to total loss of assembly. Because the chaperone calnexin (CN) associates with N-linked glycans, we examined CN interactions with AChR subunits. CN rapidly associates with 50% or more of newly synthesized AChR subunits, but not with subunits after maturation. Block of N-linked glycosylation or trimming did not alter CN-AChR subunit associations nor did subunit mutations prevent N-linked glycosylation. Additionally, CN associations with subunits lacking N-linked glycans occurred without subunit aggregation or misfolding. Our data indicate that CN associates with AChR subunits without N-linked glycan interactions. Furthermore, CN-subunit associations only occur early in AChR assembly and have no role in events later that require N-linked glycosylation.  相似文献   

8.
AMP-activated protein kinase (AMPK) is an important metabolic stress-sensing protein kinase responsible for regulating metabolism in response to changing energy demand and nutrient supply. Mammalian AMPK is a stable alphabetagamma heterotrimer comprising a catalytic alpha and two non-catalytic subunits, beta and gamma. The beta subunit targets AMPK to membranes via an N-terminal myristoyl group and to glycogen via a mid-molecule glycogen-binding domain. Here we find that the conserved C-terminal 85-residue sequence of the beta subunit, beta1-(186-270), is sufficient to form an active AMP-dependent heterotrimer alpha1beta1-(186-270)-gamma1, whereas the 25-residue beta1 C-terminal (246-270) sequence is sufficient to bind gamma1, gamma2, or gamma3 but not the alpha subunit. Deletion of the beta C-terminal Ile-270 precludes betagamma association in the absence of the alpha subunit, but the presence of the alpha subunit or substitution of Ile-270 with Ala or Glu restores betagamma binding. Truncation of the alpha subunit reveals that beta1 binding requires the alpha1-(313-473) sequence. The conserved C-terminal 85-residue sequence of the beta subunit (90% between beta1 and beta2) is the primary alphagamma binding sequence responsible for the formation of the AMPK alphabetagamma heterotrimer.  相似文献   

9.
Human high affinity IgE receptors are expressed as two different isoforms: the tetrameric isoform, alphabetagamma(2), or the trimeric isoform, alphagamma(2). The alpha chain is the IgE binding subunit, whereas the FcRbeta and FcRgamma chains are the signaling modules. Both FcRbeta and FcRgamma contain immunoreceptor tyrosine-based activation motifs (ITAM), but the beta ITAM differs from canonical ITAMs in two ways; the spacing between the two canonical tyrosines harbors a third tyrosine, and it is one amino acid shorter than in canonical ITAMs, making it unfit to bind the tandem SH2 of Syk. We have shown that FcRbeta functions as an amplifier of the FcRgamma signaling function. However, the molecular mechanism of this amplification remains unclear. Here we show that mutation of the three tyrosines (Tyr-219, Tyr-225, and Tyr-229) in the beta ITAM essentially converts alphabetagamma(2)into an alphagamma(2) complex in terms of Lyn recruitment, FcRgamma phosphorylation, Syk activation, and calcium mobilization. Tyr-219 is the most critical residue in this regard. In addition, a detailed analysis of the dynamics of calcium mobilization suggests a possible inhibitory role for Tyr-225, which becomes apparent when Tyr-219 is mutated. Thus, the signaling amplification function of FcRbeta is mainly encoded in Tyr-219 and in its capacity to recruit Lyn. In turn, this Tyr-219-mediated Lyn recruitment enhances gamma chain phosphorylation, Syk activation, and calcium mobilization. The two other tyrosines appear to have a modulating function that remains to be fully assessed.  相似文献   

10.
Clustering the tetrameric (alphabetagamma(2)) IgE receptor, FcepsilonRI, on basophils and mast cells activates the Src-family tyrosine kinase, Lyn, which phosphorylates FcepsilonRI beta and gamma subunit tyrosines, creating binding sites for the recruitment and activation of Syk. We reported previously that FcepsilonRI dimers formed by a particular anti-FcepsilonRI alpha mAb (H10) initiate signaling through Lyn activation and FcepsilonRI subunit phosphorylation, but cause only modest activation of Syk and little Ca(2+) mobilization and secretion. Curtailed signaling was linked to the formation of unusual, detergent-resistant complexes between Lyn and phosphorylated receptor subunits. Here, we show that H10-FcepsilonRI multimers, induced by adding F(ab')(2) of goat anti-mouse IgG to H10-treated cells, support strong Ca(2+) mobilization and secretion. Accompanying the recovery of signaling, H10-FcepsilonRI multimers do not form stable complexes with Lyn and do support the phosphorylation of Syk and phospholipase Cgamma2. Immunogold electron microscopy showed that H10-FcepsilonRI dimers colocalize preferentially with Lyn and are rarely within the osmiophilic "signaling domains" that accumulate FcepsilonRI and Syk in Ag-treated cells. In contrast, H10-FcepsilonRI multimers frequently colocalize with Syk within osmiophilic patches. In sucrose gradient centrifugation analyses of detergent-extracted cells, H10-treated cells show a more complete redistribution of FcepsilonRI beta from heavy (detergent-soluble) to light (Lyn-enriched, detergent-resistant) fractions than cells activated with FcepsilonRI multimers. We hypothesize that restraints imposed by the particular orientation of H10-FcepsilonRI dimers traps them in signal-initiating Lyn microdomains, and that converting the dimers to multimers permits receptors to dissociate from Lyn and redistribute to separate membrane domains that support Syk-dependent signal propagation.  相似文献   

11.
The high affinity IgE receptor (FcepsilonRI) usually exists as a tetramer composed of alphabetagamma2 subunits. The COOH-tail of beta and gamma subunits contains consensus sequence termed 'immunoreceptor tyrosine-based activation motif' (ITAM). Tyrosine phosphorylated ITAM interacts with signaling proteins that contain the Src homology domain, forming a main amplifying and signaling route for FcepsilonRI. Unlike the COOH-tail, the functional role of NH(2)-tail of beta subunit in the signaling of FcepsilonRI is not clear because it lacks the ITAM sequences. To study the roles of NH(2)-tail of beta subunit, the cDNA library of RBL-2H3 cells was screened by yeast two-hybrid assay, and the NH(2)-tail of the beta subunit was found to interact with phospholipase Cgamma2 (PLCgamma2) but not with PLCgamma1. Since both PLCgamma1 and PLCgamma2 are expressed in RBL-2H3 cells and they possess identical cellular functions, the functional meaning of the protein-protein interaction between PLCgamma2 and NH(2)-tail of beta subunit was studied by comparing the regulatory pathways that control the FcepsilonRI-mediated tyrosine phosphorylation of the two enzymes. Our study shows that PI3-kinase and PMA-sensitive PKCs were required exclusively for the FcepsilonRI-mediated tyrosine phosphorylation of PLCgamma1. Also the FcepsilonRI-mediated tyrosine phosphorylation of PLCgamma1 was more sensitive to the inhibitors of Src and Syk kinases. These results therefore suggest that PLCgamma1 is involved in dynamic regulation of protein kinase C activity and inositol triphosphate levels in response to cellular needs. In contrast, PLCgamma2, through continuous interaction with the NH(2)-tail of beta subunit, co-localizes with FcepsilonRI in the same signaling domain, and maintains the basal cellular PLC activity.  相似文献   

12.
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.  相似文献   

13.
K P Kearse  D B Williams    A Singer 《The EMBO journal》1994,13(16):3678-3686
The alpha beta T-cell antigen receptor (TCR) is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER). In this report we have examined the role of oligosaccharide processing on survival and assembly of nascent TCR proteins within the ER and their associations with molecular chaperone proteins important in TCR assembly. We found that treatment of BW5147 T cells with the glucosidase inhibitor castanospermine resulted in markedly accelerated degradation of nascent TCR alpha proteins with a half-life of approximately 20 min. Accelerated degradation was unique to TCR alpha proteins, as the stability of nascent TCR beta and CD3 gamma,epsilon chains was unaltered. Consistent with a requirement for glucose (Glc) trimming for survival of nascent TCR alpha proteins within the ER, we found that newly synthesized TCR alpha chains were innately unstable in the glucosidase II-deficient BW5147 mutant cell line PHAR2.7. In addition to destabilizing nascent TCR alpha proteins we found that persistence of Glc residues on core oligosaccharides markedly interfered with association of both TCR alpha and TCR beta glycoproteins with the molecular chaperone calnexin. Finally, using 2B4 T hybridoma cells in which TCR complexes are efficiently assembled, we found that rapid degradation of nascent TCR alpha proteins induced by impaired Glc trimming severely limits assembly of TCR alpha proteins with TCR beta proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Many complex membrane proteins undergo subunit folding and assembly in the ER before transport to the cell surface. Receptors for insulin and insulin-like growth factor I, both integral membrane proteins and members of the family of receptor tyrosine kinases (RTKs), are unusual in that they require homodimerization before export from the ER. To better understand chaperone mechanisms in endogenous membrane protein assembly in living cells, we have examined the folding, assembly, and transport of the human insulin receptor (HIR), a dimeric RTK. Using pulse-chase labeling and nonreducing SDS-PAGE analysis, we have explored the molecular basis of several sequential maturation steps during receptor biosynthesis. Under normal growth conditions, newly synthesized receptor monomers undergo disulfide bond formation while associated with the homologous chaperones calnexin (Cnx) and calreticulin (Crt). An inhibitor of glucose trimming, castanospermine (CST), abolished binding to Cnx/Crt but also unexpectedly accelerated receptor homodimerization resulting in misfolded oligomeric proreceptors whose processing was delayed and cell surface expression was also decreased by ~30%. Prematurely-dimerized receptors were retained in the ER and more avidly associated with the heat shock protein of 70 kD homologue binding protein. In CST-treated cells, receptor misfolding followed disordered oligomerization. Together, these studies demonstrate a chaperone function for Cnx/Crt in HIR folding in vivo and also provide evidence that folding efficiency and homodimerization are counterbalanced.  相似文献   

15.
Soluble secretory proteins are transported from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) in vesicles coated with COP-II coat proteins. The sorting of secretory cargo into these vesicles is thought to involve transmembrane cargo-receptor proteins. Here we show that a cathepsin-Z-related glycoprotein binds to the recycling, mannose-specific membrane lectin ERGIC-53. Binding occurs in the ER, is carbohydrate- and calcium-ion-dependent and is affected by untrimmed glucose residues. Binding does not, however, require oligomerization of ERGIC-53, although oligomerization is required for exit of ERGIC-53 from the ER. Dissociation of ERGIC-53 occurs in the ERGIC and is delayed if ERGIC-53 is mislocalized to the ER. These results strongly indicate that ERGIC-53 may function as a receptor facilitating ER-to-ERGIC transport of soluble glycoprotein cargo.  相似文献   

16.
Heterotrimeric a/eIF2alphabetagamma (archaeal homologue of the eukaryotic translation initiation factor 2 with alpha, beta and gamma subunits) delivers charged initiator tRNA (tRNAi) to the small ribosomal subunit. In this work, we determined the structures of aIF2gamma from the archaeon Sulfolobus solfataricus in the nucleotide-free and GDP-bound forms. Comparison of the free, GDP and Gpp(NH)p-Mg2+ forms of aIF2gamma revealed a sequence of conformational changes upon GDP and GTP binding. Our results show that the affinity of GDP to the G domain of the gamma subunit is higher than that of Gpp(NH)p. In analyzing a pyrophosphate molecule binding to domain II of the gamma subunit, we found a cleft that is very suitable for the acceptor stem of tRNA accommodation. It allows the suggestion of an alternative position for Met-tRNA i Met on the alphagamma intersubunit dimer, at variance with a recently published one. In the model reported here, the acceptor stem of the tRNAi is approximately perpendicular to that of tRNA in the ternary complex elongation factor Tu-Gpp(NH)p-tRNA. According to our analysis, the elbow and T stem of Met-tRNA i Met in this position should make extensive contact with the alpha subunit of aIF2. Thus, this model is in good agreement with experimental data showing that the alpha subunit of aIF2 is necessary for the stable interaction of aIF2gamma with Met-tRNA i Met.  相似文献   

17.
Nascent and newly synthesized glycoproteins enter the calnexin (Cnx)/calreticulin (Crt) cycle when two out of three glucoses in the core N-linked glycans have been trimmed sequentially by endoplasmic reticulum (ER) glucosidases I (GI) and II (GII). By analyzing arrested glycopeptides in microsomes, we found that GI removed the outermost glucose immediately after glycan addition. However, although GII associated with singly glycosylated nascent chains, trimming of the second glucose only occurred efficiently when a second glycan was present in the chain. Consistent with a requirement for multiple glycans to activate GII, pancreatic RNase in live cells needed more than one glycan to enter the Cnx/Crt cycle. Thus, whereas GI trimming occurs as an automatic extension of glycosylation, trimming by GII is a regulated process. By adjusting the number and location of glycans, glycoproteins can instruct the cell to engage them in an individually determined folding and quality control pathway.  相似文献   

18.
19.
20.
Members of the CD1 family of membrane glycoproteins can present antigenic lipids to T lymphocytes. Like major histocompatibility complex class I molecules, they form a heterodimeric complex of a heavy chain and beta(2)-microglobulin (beta(2)m) in the endoplasmic reticulum (ER). Binding of lipid antigens, however, takes place in endosomal compartments, similar to class II molecules, and on the plasma membrane. Unlike major histocompatibility complex class I or CD1b molecules, which need beta(2)m to exit the ER, CD1d can be expressed on the cell surface as either a free heavy chain or associated with beta(2)m. These differences led us to investigate early events of CD1d biosynthesis and maturation and the role of ER chaperones in its assembly. Here we show that CD1d associates in the ER with both calnexin and calreticulin and with the thiol oxidoreductase ERp57 in a manner dependent on glucose trimming of its N-linked glycans. Complete disulfide bond formation in the CD1d heavy chain was substantially impaired if the chaperone interactions were blocked by the glucosidase inhibitors castanospermine or N-butyldeoxynojirimycin. The formation of at least one of the disulfide bonds in the CD1d heavy chain is coupled to its glucose trimming-dependent association with ERp57, calnexin, and calreticulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号