首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of human [Glu1]plasminogen [( Glu1]Pg) by human recombinant (rec) two-chain tissue plasminogen activator (t-PA) is inhibited by Cl-, at physiological concentrations, and stimulated by epsilon-aminocaproic acid (EACA), as well as fibrin(ogen). Chloride functions as a result of its binding to [Glu1]Pg, with a Ki of approximately 9.0 mM, thereby rendering [Glu1]Pg a less effective substrate for two-chain rec-t-PA. EACA stimulates the activation in Cl-(-)containing solutions, with a Ka of approximately 4.0 mM, primarily by reversal of the Cl-(-)inhibitory effect. Fibrinogen appears to exert its stimulatory properties mainly through effects on the enzyme, two-chain rec-t-PA, with a Ka of approximately 3.7 microM in activation systems containing physiological levels of Cl-. Analysis of the results of this paper reveals that normal plasma components, Cl- and fibrinogen, exert major regulatory roles on the ability of [Glu1]Pg to be activated by two-chain rec-t-PA, in in vitro systems. The presence of Cl- inhibits the stimulation of [Glu1]Pg activation that would normally occur in the presence of fibrinogen, a result of possible importance to the observation that some degree of systemic fibrinogenolysis accompanies therapeutic use of tissue plasminogen activator.  相似文献   

2.
Ionic strength, divalent cations, and Cl- modulate the ability of the glycosaminoglycan heparin to stimulate the activation of human plasminogen (Pg) by tissue-type Pg activator. Kinetic analysis of Pg activation indicates that heparin is inhibitory, stimulatory, or nonstimulatory as a function of ionic strength. While increasing ionic strength inhibits Pg activation in the absence of heparin, in it presence an activation phase followed by an inhibitory phase is observed. Divalent cations, inhibitors of activation in the absence of heparin, increase the rate of activation in its presence. Kinetic analysis demonstrates that divalent cations augment the heparin stimulatory effect a maximum of 60-fold due to increases in kcat without changes in Km of the reaction. This effect is heparin-specific, since activation is not affected by Ca2+ in the presence of heparan sulfate or de-N-sulfated heparin. Also, Cl- inhibits Pg activation in the presence of heparin by acting as a competitive inhibitor (Kic of 100 mM). Furthermore, inhibition by Cl- reduces the overall magnitude of heparin stimulation of Pg activation. These results suggest that physiologic ions in combination with heparin may be significant effectors of Pg activation in the vascular microenvironment.  相似文献   

3.
On the mechanism of fibrin-specific plasminogen activation by staphylokinase   总被引:10,自引:0,他引:10  
The mechanism of plasminogen activation by recombinant staphylokinase was studied both in the absence and in the presence of fibrin, in purified systems, and in human plasma. Staphylokinase, like streptokinase, forms a stoichiometric complex with plasminogen that activates plasminogen following Michaelis-Menten kinetics with Km = 7.0 microM and k2 = 1.5 s-1. In purified systems, alpha 2-antiplasmin inhibits the plasminogen-staphylokinase complex with k1(app) = 2.7 +/- 0.30 x 10(6) M-1 s-1 (mean +/- S.D., n = 12), but not the plasminogen-streptokinase complex. Addition of 6-aminohexanoic acid induces a concentration-dependent reduction of k1(app) to 2.0 +/- 0.17 x 10(4) M-1 s-1 (mean +/- S.D., n = 5) at concentrations greater than or equal to 30 mM, with a 50% reduction at a 6-aminohexanoic acid concentration of 60 microM. Staphylokinase does not bind to fibrin, and fibrin stimulates the initial rate of plasminogen activation by staphylokinase only 4-fold. Staphylokinase induces a dose-dependent lysis of a 0.12-ml 125I-fibrin-labeled human plasma clot submersed in 0.5 ml of citrated human plasma; 50% lysis in 2 h is obtained with 17 nM staphylokinase and is associated with only 5% plasma fibrinogen degradation. Corresponding values for streptokinase are 68 nM and more than 90% fibrinogen degradation. In the absence of a fibrin clot, 50% fibrinogen degradation in human plasma in 2 h requires 790 nM staphylokinase, but only 4.4 nM streptokinase. These results suggest the following mechanism for relatively fibrin-specific clot lysis with staphylokinase in a plasma milieu. In plasma in the absence of fibrin, the plasminogen-staphylokinase complex is rapidly neutralized by alpha 2-antiplasmin, thus preventing systemic plasminogen activation. In the presence of fibrin, the lysine-binding sites of the plasminogen-staphylokinase complex are occupied and inhibition by alpha 2-antiplasmin is retarded, thus allowing preferential plasminogen activation at the fibrin surface.  相似文献   

4.
Two components of the fibrinolytic system, plasminogen and the vascular plasminogen activator, have been isolated to apparent homogeneity from the post-venous occlusion plasma of three diabetic patients (hemoglobin A1C greater than 7%) and of one nondiabetic control person. Plasminogen activation was studied for each person separately in the absence and presence of CNBr fragments of fibrinogen. Activation of diabetic plasminogen by urokinase was not significantly altered as compared to the activation of control plasminogen. The same was found when diabetic plasminogen was activated by control vascular plasminogen activator in the presence of fibrinogen fragments but only at plasminogen concentrations below 10-30 nM; at higher substrate concentrations, however, plasminogen activation was impaired in a pattern resembling substrate inhibition. Activation of control plasminogen by diabetic vascular plasminogen activator was completely impaired in the absence of fibrinogen fragments. Addition of fibrinogen fragments stimulated plasmin formation by diabetic vascular plasminogen activator resulting in kinetic constants which were similar to the activation of control plasminogen by control vascular plasminogen activator in the absence of fibrinogen fragments (Km = 7.5 microM, kcat = 0.05 S-1). Addition of fibrinogen fragments in controls decreased Km values to less than 0.1 microM. Despite addition of fibrinogen fragments the rate of plasmin formation from diabetic plasminogen by diabetic vascular plasminogen activator isolated from the same diabetic donor was so small that kinetic constants could not be calculated.  相似文献   

5.
The dissolution of blood clots by plasmin is normally initiated in vivo by the activation of plasminogen to plasmin through the activity of tissue plasminogen activator (t-PA). The rate of plasminogen activation can be stimulated several orders of magnitude by the presence of fibrin-related proteins. Here we describe the kinetic analysis of both recombinant human t-PA (wild-type) and a t-PA variant produced by site-directed mutagenesis in which the original sequence from amino acids 296 to 299, KHRR, has been altered to AAAA. This tetra-alanine variant form of t-PA, K296A/H297A/R298A/R299A t-PA, we refer to as "KHRR" t-PA here. The plasminogen activating kinetics of wild-type t-PA (Activase alteplase) showed a catalytic efficiency which changed over 100-fold dependent on the stimulator in the assay. The lowest rate was in the absence of a stimulator. The following stimulators showed increasing ability to accelerate the catalytic efficiency of the reaction: fibrinogen, fragments of fibrinogen obtained by digestion with plasmin, fibrin, and slightly degraded fibrin. This increase in efficiency was driven primarily by decreases in the Michaelis constant (KM) of the reaction, whereas the catalytic rate constant (kcat) of the reaction did not change significantly. The "KHRR" variant of t-PA displayed novel kinetics with all stimulators tested. In the absence of a stimulator or with the poorer stimulators (fibrinogen and fibrinogen fragments), the KM values of the reaction with Activase alteplase and "KHRR" t-PA were similar. The kcat however, was lower with "KHRR" t-PA than with wild-type t-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The kinetics of the activation of plasminogen by tissue-type plasminogen activator were studied in the presence and the absence of CNBr-digested fibrinogen as a soluble cofactor. Michaelis-Menten kinetics applied and the kinetic parameters obtained were very similar to those previously reported for the activation in the presence of solid phase fibrin (Hoylaerts, M., Rijken, D. C., Lijnen, H. R., and Collen, D. (1982) J. Biol. Chem. 257, 2912-2919). The affinity of the enzyme for plasminogen dramatically increases in the presence of the soluble cofactor while the catalytic rate constant does not change significantly (KM drops from 83 to 0.18 microM and kcat increases from 0.07 to 0.28 s-1 for tissue-type plasminogen activator of melanoma origin). Fragments containing the lysine-binding sites of plasminogen compete with plasminogen for interaction with CNBr-digested fibrinogen. The dissociation constant of this interaction was found to be 4.5 microM for the high affinity lysine-binding site. No difference was found in the kinetic parameters for the activation of plasminogen by either tissue-type plasminogen activator of melanoma origin or by glycosylated forms of tissue-type plasminogen activator obtained by recombinant DNA technology. The present findings obtained in a homogenous liquid milieu support the previously proposed mechanism of the activation of plasminogen by tissue-type plasminogen activator in the presence of fibrin. This mechanism involves binding of both tissue-type plasminogen activator and plasminogen to fibrin.  相似文献   

7.
The kinetics of activation of Glu-plasminogen (Glu-Pg) and Lys77-Pg by two-chain recombinant tissue plasminogen activator (t-PA) were determined in the presence of isolated protein components of the extracellular matrix (ECM) and compared to activation in the presence of fibrinogen and fibrinogen fragments and in the absence of added protein. Several ECM protein components were as effective as fibrinogen fragments at stimulating Pg activation. Stimulation of Glu-Pg activation resulted from both a decrease in Km and an increase in Vmax, whereas stimulation of Lys77-Pg was due primarily to increases in Vmax. The most effective stimulators of activation were basement membrane type IV collagen and gelatin which resulted in a 21- and 55-fold increase, respectively, in the kcat/Km of Glu-Pg (relative to a 10-fold increase observed with fibrinogen fragments). Amidolytic activity of t-PA was also enhanced up to 12-fold by ECM proteins. However, plasmin amidolytic activity was unaffected by the presence of added proteins. These data suggest that several ECM-associated proteins can enhanced the activation of Pg in the absence of fibrin.  相似文献   

8.
To investigate the effect of ionophores on Cl- distribution in human erythrocyte suspensions, we measured the membrane potential by using 19F and 31P NMR methods. Incubation of human erythrocytes with 0.005 mM of the neutral ionophores valinomycin and nonactin resulted in membrane potentials of -21.2 and -17.8 mV in the presence and absence of DIDS. However, 0.020 mM of the carboxylic ionophores lasalocid, monensin, and nigericin yielded membrane potentials similar to those measured in the absence of ionophore (-9.4 mV). In methanol, the 35Cl- NMR linewidth in the presence of valinomycin was twice as broad as those observed in the presence of carboxylic ionophores, suggesting that neutral ionophores induce Cl- efflux in part via ion pairing.  相似文献   

9.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

10.
The activation of plasminogen by two novel hybrid enzymes, constructed from the A-chain of plasmin and the B-chains of tissue-type plasminogen activator (t-PA) or urokinase, was compared with the activation by the parent enzymes. Basal kinetic constants for 'Lys-plasminogen' (human plasminogen with N-terminal lysine) and 'Glu-plasminogen' (human plasminogen with N-terminal glutamic acid) activation were similar to those of the parent activators. The Km for plasminogen turnover for both hybrid enzymes was considerably decreased in the presence of both soluble fibrin and a mimic, a CNBr digest of fibrinogen. These enhancements and the related apparent negative co-operativity are similar to the behaviour of t-PA itself. The results are discussed with regard to the molecular features involved in the mechanism of fibrin stimulation.  相似文献   

11.
M R Ehlers  R E Kirsch 《Biochemistry》1988,27(15):5538-5544
The catalysis of the hydrolysis of angiotensin I, an important natural substrate, by human angiotensin-converting enzyme (ACE) was examined in detail as a function of chloride and hydrogen ion concentration. Chloride was found to be a nonessential activator over the pH range 5.0-10.0, with the chloride dependence increasing with increasing pH: the velocity enhancement at optimal [Cl-] increased from 1.6- to 42-fold; the chloride optimum and Ka' increased from 20 to 520 mM and from 0.22 to 120 mM, respectively, and activity in the absence of chloride decreased from 60.9 to 2.4% (relative to maximal activation). Kinetic analyses at pH 6.0, 7.5, and 9.0 confirmed the nonessential activator mechanism. At all pH values tested chloride was found to be inhibitory (relative to maximal activation) at supraoptimal chloride levels. Depending on the [Cl-] range, both apparent uncompetitive and competitive modes were demonstrated. From pH 6.0 to 9.0 Kis varied between 110 and 1140 mM (apparent). In all cases Ki' much greater than Ka'. We suggest that at high [Cl-] chloride binds to low-affinity inhibitory sites on the free enzyme and on the ES and EP complexes. The pH-rate profile demonstrated a chloride-dependent alkaline shift, with the pH optimum increasing from 7.1 at zero chloride to 7.6 at 400 mM NaCl. At [S] much greater than Km a plot of log nu vs pH revealed pKs of 5.9 and 9.4 in the ES complex in the absence of chloride, while at maximally activating [Cl-] only one ionization at pK = 6.3 was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

13.
One of thirty murine monoclonal antibodies, raised by immunization with human plasmin-alpha 2-antiplasmin complex, was found to be directed against the high-affinity lysine-binding site in plasminogen. Indeed, this antibody (MA-HAL) reacted with plasminogen and with a fragment of plasminogen composed of the first three triple-loop structures (LBS I) and was displaced by 6-aminohexanoic acid (50% displacement at 25 microM). In competitive radioimmunoassays the binding of radiolabeled plasminogen to MA-HAL was reduced to 50% with 2.3 microM alpha 2-antiplasmin or 1.3 microM histidine-rich glycoprotein, which corresponds to the known dissociation constants between these ligands and the high-affinity lysine-binding site of plasminogen. MA-HAL did not influence the activation of plasminogen by tissue-type plasminogen activator in the absence of CNBr-digested fibrinogen, but abolished the effect of CNBr-digested fibrinogen on the Michaelis constant of the reaction. MA-HAL reduced the reaction rate between plasmin and alpha 2-antiplasmin by a factor 20 and abolished the binding of plasminogen to fibrin. These results indicate that MA-HAL specifically binds to and masks the high-affinity lysine-binding site of plasminogen. It therefore is a useful tool for the investigation of the role of this structure in the regulation of fibrinolysis, both at the level of fibrin-stimulated activation of plasminogen and of the inhibition of generated plasmin.  相似文献   

14.
Neurotransmitter transporters are reported to mediate transmembrane ion movements that are poorly coupled to neurotransmitter transport and to exhibit complex "channel-like" behaviors that challenge the classical "alternating access" transport model. To test alternative models, and to develop an improved model for the Na+- and Cl--dependent gamma-aminobutyric acid (GABA) transporter, GAT1, we expressed GAT1 in Xenopus oocytes and analyzed its function in detail in giant membrane patches. We detected no Na+- or Cl--dependent currents in the absence of GABA, nor did we detect activating effects of substrates added to the trans side. Outward GAT1 current ("reverse" transport mode) requires the presence of all three substrates on the cytoplasmic side. Inward GAT1 current ("forward" transport mode) can be partially activated by GABA and Na+ on the extracellular (pipette) side in the nominal absence of Cl-. With all three substrates on both membrane sides, reversal potentials defined with specific GAT1 inhibitors are consistent with the proposed stoichiometry of 1GABA:2Na+:1Cl-. As predicted for the "alternating access" model, addition of a substrate to the trans side (120 mM extracellular Na+) decreases the half-maximal concentration for activation of current by a substrate on the cis side (cytoplasmic GABA). In the presence of extracellular Na+, the half-maximal cytoplasmic GABA concentration is increased by decreasing cytoplasmic Cl-. In the absence of extracellular Na+, half-maximal cytoplasmic substrate concentrations (8 mM Cl-, 2 mM GABA, 60 mM Na+) do not change when cosubstrate concentrations are reduced, with the exception that reducing cytoplasmic Cl- increases the half-maximal cytoplasmic Na+ concentration. The forward GAT1 current (i.e., inward current with all extracellular substrates present) is inhibited monotonically by cytoplasmic Cl- (Ki, 8 mM); cytoplasmic Na+ and cytoplasmic GABA are without effect in the absence of cytoplasmic Cl-. In the absence of extracellular Na+, current-voltage relations for reverse transport current (i.e., outward current with all cytoplasmic substrates present) can be approximated by shallow exponential functions whose slopes are consistent with rate-limiting steps moving 0.15-0.3 equivalent charges. The slopes of current-voltage relations change only little when current is reduced four- to eightfold by lowering each cosubstrate concentration; they increase twofold upon addition of 100 mM Na+ to the extracellular (pipette) side.  相似文献   

15.
The effects of purified soluble fibrin and of fibrinogen fragments (fibrin mimic) on the activation of Lys-plasminogen (i.e. plasminogen residues 77-790) to plasmin by streptokinase.plasminogen activator complex and by tissue-type plasminogen activator were studied. Dissociation constants of both activators were estimated to lie in the range 90-160 nM (fibrin) and 16-60 nM (CNBr-cleavage fragments of fibrinogen). The kinetic mechanism for both types of activator comprised non-essential enzyme activation via a Rapid Equilibrium Ordered Bireactant sequence. In order to relate the fibrin affinity of plasminogen activators to their fibrinolytic potency, the rate of lysis of supported human plasma clots formed in the presence of unmodified or active-centre-acylated precursors of plasminogen activators was studied as a function of the concentration of enzyme derivative. The concentrations of unmodified enzyme giving 50% lysis/h in this assay were 0.9, 2.0 and 11.0 nM for tissue-type plasminogen activator, streptokinase.plasmin(ogen) and urokinase respectively. However, the potencies of active-centre-acylated derivatives of these enzymes suggested that acylated-tissue plasminogen activator and streptokinase.plasminogen complexes of comparable hydrolytic stability were of comparable potency. Both types of acyl-enzyme were significantly more potent than acyl-urokinases.  相似文献   

16.
Raschke K 《Planta》2003,217(4):651-657
In previous investigations two anion conductances were discovered in guard-cell protoplasts: the quickly activating anion conductance (QUAC, R-type) and the slowly activating anion conductance (SLAC, S-type). In this investigation, effects of malate on the two anion conductances were tested in whole guard cells of Vicia faba L. by the use of the discontinuous single-electrode voltage-clamp method. Application of 1-s voltage ramps proved that QUAC displayed the malate shift of the activation threshold toward hyperpolarization also in complete guard cells. The sensitivity of SLAC to external malate was determined by responses to voltage pulses of 20 s duration at Cl- concentrations of 0.1, 3 or 50 mM. At no voltage were the currents measured at the end of the pulses in the presence and absence of malate significantly different from each other; the current-voltage relationship of SLAC appeared not to be affected by malate. However, in 32% of the cells exposed to malate, current activation in response to voltage steps occurred within 0.1 s, faster than was typical for SLAC, and activation was followed by inactivation with a half-time similar to 10 s: SLAC apparently had changed to QUAC. Simultaneously, the free-running membrane voltage depolarized at 0.1 mM Cl-, did not change at 3 mM Cl- and polarized at 50 mM Cl-, indicating that activation of QUAC increased the membrane conductance for anions and thereby drove the membrane voltage toward the equilibrium voltage of Cl-. The malate-induced changes were fully reversible at Cl- concentrations of 0.1 and 3 mM. These results reinforce the proposition that SLAC and QUAC represented two switching modes of the same anion channel (however, they do not suffice as proof); they also show that this interconvertibility can enable guard cells to control their membrane voltage rapidly.  相似文献   

17.
The fibrinolytic system comprises a proenzyme, plasminogen, which can be converted to the active enzyme, plasmin, which degrades fibrin. Plasminogen activation is mediated by plasminogen activators, which are classified as either tissue-type plasminogen activators (t-PA) or urokinase-type plasminogen activators (u-PA). Inhibition of the fibrinolytic system may occur at the level of the activators or at the level of generated plasmin. Plasmin has a low substrate specificity, and when circulating freely in the blood it degrades several proteins including fibrinogen, factor V, and factor VIII. Plasma does, however, contain a fast-acting plasmin inhibitor, alpha 2-antiplasmin, which inhibits free plasmin extremely rapidly but which reacts much slower with plasmin bound to fibrin. A "systemic fibrinolytic state" may, however, occur by extensive activation of plasminogen and depletion of alpha 2-antiplasmin. Clot-specific thrombolysis therefore requires plasminogen activation restricted to the vicinity of the fibrin. Two physiological plasminogen activators, t-PA and single-chain u-PA (scu-PA) induce clot-specific thrombolysis, via entirely different mechanisms, however. t-PA is relatively inactive in the absence of fibrin, but fibrin strikingly enhances the activation rate of plasminogen by t-PA. This is explained by an increased affinity of fibrin-bound t-PA for plasminogen and not by alteration of the catalytic rate constant of the enzyme. The high affinity of t-PA for plasminogen in the presence of fibrin thus allows efficient activation on the fibrin clot, while no significant plasminogen activation by t-PA occurs in plasma. scu-PA has a high affinity for plasminogen (Km = 0.3 microM) but a low catalytic rate constant (kcat = 0.02 sec-1). However, scu-PA does not activate plasminogen in plasma in the absence of a fibrin clot, owing to the presence of (a) competitive inhibitor(s). Fibrin-specific thrombolysis appears to be due to the fact that fibrin reverses the competitive inhibition. The thrombolytic efficacy and fibrin specificity of natural and recombinant t-PA has been demonstrated in animal models of pulmonary embolism, venous thrombosis, and coronary artery thrombosis. In all these studies intravenous infusion of t-PA at sufficiently high rates caused efficient thrombolysis in the absence of systemic fibrinolytic activation. The efficacy and relative fibrinogen-sparing effect of t-PA was recently confirmed in three multicenter clinical trials in patients with acute myocardial infarction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The alpha-2-antiplasmin influence on the Glu-plasminogen activation by tissue activator both on fibrin and fibrin(ogen) fragments was investigated. The kinetics of activation was studied and velocity of this process in the absence and presence of the inhibitor was calculated. It was established that alpha-2-antiplasmin decreased the velocity of Glu-plasminogen activation on desAABBfibrin, DDE-complex and DD-dimer and did no influence upon proenzyme activation on fibrinogen fragment--Ho1-DSK. In the presence of fibrin plasminogen activation linear related to the amount added tissue activator in limit concentration from 5 before 50 units/ml. It was shown that alpha-2-antiplasmin reduced the activation velocity with used concentration of tissue activator. Fibrin hydrolysis by plasmin, forming on its surface during the plasminogen activation by tissue activator, was also inhibited with alpha-2-antiplasmin. The obtained results are explained by the influence of the inhibitor on formation of the triple complex between plasminogen, tissue activator and fibrin, and competition of the alpha-2-antiplasmin for lysine-binding sites of tissue activator kringle 2 or for binding sites of the activator on fibrin.  相似文献   

19.
Little information is available on the role of Na+, K+, and Cl- in the initial event of uptake of substrates by the dopamine transporter, i.e., the recognition step. In this study, substrate recognition was studied via the inhibition of binding of [3H]WIN 35,428 [2beta-carbomethoxy-3beta-(4-fluorophenyl)[3H]tropane], a cocaine analogue, to the human dopamine transporter in human embryonic kidney 293 cells. D-Amphetamine was the most potent inhibitor, followed by p-tyramine and, finally, dl-octopamine; respective affinities at 150 mM Na+ and 140 mM Cl- were 5.5, 26, and 220 microM. For each substrate, the decrease in the affinity with increasing [K+] could be fitted to a competitive model involving the same inhibitory cation site (site 1) overlapping with the substrate domain as reported by us previously for dopamine. K+ binds to this site with an apparent affinity, averaged across substrates, of 9, 24, 66, 99, and 134 mM at 2, 10, 60, 150, and 300 mM Na+, respectively. In general, increasing [Na+] attenuated the inhibitory effect of K+ in a manner that deviated from linearity, which could be modeled by a distal site for Na+, linked to site 1 by negative allosterism. The presence of Cl- did not affect the binding of K+ to site 1. Models assuming low binding of substrate in the absence of Na+ did not provide fits as good as models in which substrate binds in the absence of Na+ with appreciable affinity. The binding of dl-octopamine and p-tyramine was strongly inhibited by Na+, and stimulated by Cl- only at high [Na+] (300 mM), consonant with a stimulatory action of Cl- occurring through Na+ disinhibition.  相似文献   

20.
Although much is known about the effects of Na+, K+, and Cl- on the functional activity of the neuronal dopamine transporter, little information is available on their role in the initial event in dopamine uptake, i.e., the recognition step. This was addressed here by studying the inhibition by dopamine of the binding of [3H]WIN 35,428 [2beta-carbomethoxy-3beta-(4-fluorophenyl)[3H]tropane], a phenyltropane analogue of cocaine, to the cloned human dopamine transporter expressed in HEK-293 cells. The decrease in the affinity of dopamine (or WIN 35,428) binding affinity with increasing [K+] could be fitted to a competitive model involving an inhibitory cation site (1) overlapping with the dopamine (or WIN 35,428) domain. The K+ IC50 for inhibiting dopamine or WIN 35,428 binding increased linearly with [Na+], indicating a K(D,Na+) of 30-44 mM and a K(D,K+) of 13-16 mM for this cation site. A second Na+ site (2), distal from the WIN 35,428 domain but linked by positive allosterism, was indicated by model fitting of the WIN 35,428 binding affinities as a function of [Na+]. No strong evidence for this second site was obtained for dopamine binding in the absence or presence of low (20 mM) Cl- and could not be acquired for high [Cl-] because of the lack of a suitable substitute ion for Na+. The K(D) but not Bmax of [3H]WIN 35,428 binding increased as a function of the [K+]/[Na+] ratio regardless of total [Cl-] or ion tonicity. A similar plot was obtained for the Ki of dopamine binding, with Cl- at > or = 140 mM decreasing the Ki. At 290 mM Cl- and 300 mM Na+ the potency of K+ in inhibiting dopamine binding was enhanced as compared with the absence of Cl- in contrast to the lack of effect of Cl- up to 140 mM (Na up to 150 mM). The results indicate that Cl- at its extracellular level enhances dopamine binding through a mechanism not involving site 1. The observed correspondence between the WIN 35,428 and dopamine domains in their inclusion of the inhibitory cation site explains why many of the previously reported interrelated effects of Na+ and K+ on the binding site of radiolabeled blockers to the dopamine transporter are applicable to dopamine uptake in which dopamine recognition is the first step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号