首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of acetazolamide on cerebral acid-base balance   总被引:3,自引:0,他引:3  
Acetazolamide (AZ) inhibition of brain and blood carbonic anhydrase increases cerebral blood flow by acidifying cerebral extracellular fluid (ECF). This ECF acidosis was studied to determine whether it results from high PCO2, carbonic acidosis (accumulation of H2CO3), or lactic acidosis. Twenty rabbits were anesthetized with pentobarbital sodium, paralyzed, and mechanically ventilated with 100% O2. The cerebral cortex was exposed and fitted with thermostatted flat-surfaced pH and PCO2 electrodes. Control values (n = 14) for cortex ECF were pH 7.10 +/- 0.11 (SD), PCO2 42.2 +/- 4.1 Torr, PO2 107 +/- 17 Torr, HCO3- 13.8 +/- 3.0 mM. Control values (n = 14) for arterial blood were arterial pH (pHa) 7.46 +/- 0.03 (SD), arterial PCO2 (PaCO2) 32.0 +/- 4.1 Torr, arterial PO2 (PaO2) 425 +/- 6 Torr, HCO3- 21.0 +/- 2.0 mM. After intravenous infusion of AZ (25 mg/kg), end-tidal PCO2 and brain ECF pH immediately fell and cortex PCO2 rose. Ventilation was increased in nine rabbits to bring ECF PCO2 back to control. The changes in ECF PCO2 then were as follows: pHa + 0.04 +/- 0.09, PaCO2 -8.0 +/- 5.9 Torr, HCO3(-)-2.7 +/- 2.3 mM, PaO2 +49 +/- 62 Torr, and changes in cortex ECF were as follows: pH -0.08 +/- 0.04, PCO2 -0.2 +/- 1.6 Torr, HCO3(-)-1.7 +/- 1.3 mM, PO2 +9 +/- 4 Torr. Thus excess acidity remained in ECF after ECF PCO2 was returned to control values. The response of intracellular pH, high-energy phosphate compounds, and lactic acid to AZ administration was followed in vivo in five other rabbits with 31P and 1H nuclear magnetic resonance spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of hypocapnia [arterial PCO(2) (Pa(CO(2))) 15 Torr] on splanchnic hemodynamics and gut mucosal-arterial P(CO(2)) were studied in seven anesthetized ventilated dogs. Ileal mucosal and serosal blood flow were estimated by using laser Doppler flowmetry, mucosal PCO(2) was measured continuously by using capnometric recirculating gas tonometry, and serosal surface PO(2) was assessed by using a polarographic electrode. Hypocapnia was induced by removal of dead space and was maintained for 45 min, followed by 45 min of eucapnia. Mean Pa(CO(2)) at baseline was 38.1 +/- 1.1 (SE) Torr and decreased to 13.8 +/- 1.3 Torr after removal of dead space. Cardiac output and portal blood flow decreased significantly with hypocapnia. Similarly, mucosal and serosal blood flow decreased by 15 +/- 4 and by 34 +/- 7%, respectively. Also, an increase in the mucosal-arterial PCO(2) gradient of 10.7 Torr and a reduction in serosal PO(2) of 30 Torr were observed with hypocapnia (P < 0.01 for both). Hypocapnia caused ileal mucosal and serosal hypoperfusion, with redistribution of flow favoring the mucosa, accompanied by increased PCO(2) gradient and diminished serosal PO(2).  相似文献   

3.
Ventilatory responses to changes in PCO2 of the blood perfusing the central nervous system were studied breath by breath by pneumotachography in Pekin ducks under transient and steady condition. 1. Transients. In conscious birds, all the arteries to the cephalic region were tied or clamped, except the right internal carotid. The blood supply via the single remaining arterial pathway was transiently replaced, for about 15 sec, by injecting 2 ml of blood previously made either normocapnic (control PCO2 = 32 Torr) or hypercapnic (test; PCO2 = 76 Torr) from a syringe thermostated at 41 degrees C, under normal oxygenation (PO2 around 110 Torr) and mean endovascular pressure (107 mm Hg). During control injections, no significant ventilatory changes were observed. In contrast, test injections provoked an early and significant 20% increase in the minute volume of ventilation. 2. Steady conditions. Using cross-perfusion between pairs of anesthetized ducks, the head of a recipient animal (R) was vascularly isolated from the trunk and perfused by a donor (D), the nervous connections with the trunk remaining intact. When giving some CO2 to breathe to D (FICO2 = 0.05) while R breathed ambient air, arterial PCO2 increased in D and in the head of R, and hyperventilation occurred in both ducks. As a consequence of this hyperventilation, PCO2 decreased in the arterial blood and the end-tidal gas of R.  相似文献   

4.
To reinvestigate the blood-gas CO2 equilibrium in lungs, rebreathing experiments were performed in five unanesthetized dogs prepared with a chronic tracheostomy and an exteriorized carotid loop. The rebreathing bag was initially filled with a gas mixture containing 6-8% CO2, 12, 21, or 39% O2, and 1% He in N2. During 4-6 min of rebreathing PO2 in the bag was kept constant by a controlled supply of O2 while PCO2 rose steadily from approximately 40 to 75 Torr. Spot samples of arterial blood were taken from the carotid loop; their PCO2 and PO2 were measured by electrodes and compared with the simultaneous values of end-tidal gas read from a mass spectrometer record. The mean end-tidal-to-arterial PO2 differences averaging 16, 4, and 0 Torr with bag PO2 about 260, 130, and 75 Torr, respectively, were in accordance with a venous admixture of about 1%. No substantial PCO2 differences between arterial blood and end-tidal gas (PaCO2 - PE'CO2) were found. The mean PaCO2 - PE'CO2 of 266 measurements in 70 rebreathing periods was -0.4 +/- 1.4 (SD) Torr. There was no correlation between PaCO2 - PE'CO2 and the level of arterial PCO2 or PO2. The mean PaCO2 - PE'CO2 became +0.1 Torr when the blood transit time from lungs to carotid artery (estimated at 6 s) and the rate of rise of bag PCO2 (4.5 Torr/min) were taken into account. These experimental results do not confirm the presence of significant PCO2 differences between arterial blood and alveolar gas in rebreathing equilibrium.  相似文献   

5.
Goats were prepared so that one carotid body (CB) could be perfused with blood in which the gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Since one CB is functionally adequate, the nonperfused CB was excised. To determine whether systemic arterial hypoxemia is necessary for ventilatory acclimatization to hypoxia (VAH), the CB was perfused with hypoxic normocapnic blood for 6 h [means +/- SE: partial pressure of carotid body O2 (PcbO2), 40.6 +/- 0.3 Torr; partial pressure of carotid body CO2 (PcbCO2), 38.8 +/- 0.2 Torr] while the awake goat breathed room air to maintain systemic arterial normoxia. In control periods before and after CB hypoxia the CB was perfused with hyperoxic normocapnic blood. Changes in arterial PCO2 (PaCO2) were used as an index of changes in ventilation. Acute hypoxia (0.5 h of hypoxic perfusion) resulted in hyperventilation sufficient to reduce average PaCO2 by 6.7 Torr from control (P less than 0.05). Over the subsequent 5.5 h of hypoxic perfusion, average PaCO2 decreased further, reaching 4.8 Torr below that observed acutely (P less than 0.05). Acute CB hyperoxic perfusion (20 min) following 6 h of hypoxia resulted in only partial restoration of PaCO2 toward control values; PaCO2 remained 7.9 Torr below control (P less than 0.05). The progressive hyperventilation that occurred during and after 6 h of CB hypoxia with concomitant systemic normoxia is similar to that occurring with total body hypoxia. We conclude that systemic (and probably brain) hypoxia is not a necessary requisite for VAH.  相似文献   

6.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

7.
Several studies on transcutaneous O2 probes have shown that the transcutaneous PO2 increases to approximately 80% of the arterial PO2 when the probe is heated to 44 degrees C. It is not known whether this result reflects near-complete thermic arterialization or rather other factors such as the temperature-linked right shift of the hemoglobin O2-binding curve. In many clinical applications of transcutaneous probes the use of 44 degrees C is a major disadvantage because of the risk of skin burns. The development of new probes operating at lower temperatures is hampered by the lack of data on the temperature dependence of the factors influencing the relationship between the transcutaneous PO2 and the probe temperature. The present study attempts to estimate the temperature dependence of 1) the degree of arterialization of the blood in the skin capillaries, 2) the PO2 difference across the epidermis caused by the diffusion gradient and the epidermal O2 consumption, and 3) the arteriovenous saturation difference over the skin capillaries. The estimation is based on simultaneously measured transcutaneous PO2, PCO2, and argon partial pressure (PAr) values at seven different probe temperatures. The transcutaneous PCO2 is assumed equal to the mean capillary PCO2, which is used to calculate the mean capillary PO2 by the aid of a skin model. The O2 diffusion gradient is estimated from the transcutaneous PAr, and the PO2 difference caused by the epidermal O2 consumption is set equal to the difference between the mean capillary and transcutaneous PO2 less the partial pressure difference caused by the diffusion gradient. The degree of arterialization was found to be 53% at 38 degrees C and 65% at 44 degrees C. The partial pressure difference caused by the epidermal O2 consumption decreased from 33 Torr at 38 degrees C to 6 Torr at 44 degrees C. The PO2 difference across the epidermis caused by the diffusion gradient was 7 Torr at 38 degrees C and 5 Torr at 44 degrees C. The arteriovenous saturation difference fell from 31% at 38 degrees C to 12% at 44 degrees C.  相似文献   

8.
Recent studies suggest pH sampled by arterial chemoreceptors may not equal that sampled by external pH electrodes, because the uncatalyzed hydration of CO2 in plasma is a slow reaction (t 1/2 approximately 9 S). The importance of this reaction rate to ventilatory control (particularly during exercise) is not known. We studied the effect of catalyzing the CO2-pH reaction in three awake exercising dogs with chronic tracheostomies and carotid loops; the dogs were trained to run on a treadmill. Respiration frequency, tidal volume, total ventilation, and end-tidal partial pressure of CO2 (PCO2) were continuously monitored. Periodically, carotid artery blood was drawn and analyzed for partial pressure of O2 (PO2), PCO2, pH, and plasma carbonic anhydrase (CA) activity. Measurements were made during steady-state exercise (3 mph and 10% grade), during a control period, after injection of a 5 ml bolus of saline, and after injection of 5 mg/kg of bovine CA dissolved in 5 ml of saline. This dose of CA increased the reaction rate by more than 80-fold. Neither the control nor the CA injections significantly altered the ventilatory parameters. Saline and CA date differed by less than 5% in ventilation, 1 Torr in arterial PCO2, 0.01 in pH units, and 1.5 Torr in end-tidal PCO2. Thus the of CO2 hydration in plasma is not a significant factor in ventilatory control.  相似文献   

9.
To examine the influence of pulmonary blood flow (Qp) on spontaneous ventilation (VE), we isolated the systemic and pulmonary circulations and controlled the arterial blood gases and blood flow (Q) in each circuit as we measured VE. Each dog was anesthetized with ketamine and maintained with halothane. Systemic Q was drained from the right atrium and pumped through an oxygenator and heat exchanger and returned to the aorta. An identical bypass was established for the pulmonary circulation, draining blood from the left atrium and pumping it to the pulmonary artery. The heart was fibrillated, all cannulas were brought through the chest wall, and the median sternotomy was closed. The dog was then allowed to breathe spontaneously. The arterial O2 partial pressure (PO2) of both circuits was maintained greater than 300 Torr. Systemic Q was maintained at 0.080 l X min-1 X kg-1. Initially the arterial CO2 partial pressure (PCO2) of both circuits was set at 40 Torr as Qp was varied randomly between approximately 0.025 and 0.175 l X min-1 X kg-1. The average VE-Qp relationship was linear with a slope of 1.45 (P less than 0.0005). Increasing the arterial PCO2 of both circuits to 60 Torr elevated VE an average of 0.37 l X min-1 X kg-1 at each level of Qp (P less than 0.0005). Vagotomy abolished the effect of Qp on VE. Increasing Qp affected the systemic arterial PCO2-VE response curve by shifting it upward without altering its slope. These results demonstrate that increases in Qp are associated with increases in VE. This phenomenon may contribute to exercise hyperpnea.  相似文献   

10.
The influence of ambient and arterial PCO2 on miduterine arterial flow of pregnant sheep acutely exposed to hot environments was investigated. Five mixed-breed ewes between 120 and 130 days of gestation were subjected to hot environments (increasing from thermoneutral 23 to 40 degrees C), and arterial blood pH, PCO2, and PO2 were determined at 5-min intervals. Respiratory rate, heart rate, rectal temperature, blood pressure, and miduterine arterial flow were continuously monitored prior to and during elevation of ambient air temperature. When miduterine arterial flow had decreased to 50% of thermoneutral control levels, ambient air CO2 was increased to 2.5%. Elevated ambient inspired CO2 caused a reversal in arterial pH and PCO2 to near thermoneutral levels. Miduterine arterial flow increased to 77% of the control levels following the elevated ambient PCO2 period. Respiratory rate also decreased when ambient CO2 was increased but remained 136% greater than the thermoneutral control level. All other parameters remained near their heat stress (40 degrees C) level during the elevation of ambient CO2. These data indicate that heat-stress-induced depression of miduterine arterial flow is vasoactively regulated, and cause-effect related to both arterial pH and PCO2, and thermoregulatory shunting of blood to heat-dissipating surfaces.  相似文献   

11.
The aim of this study was to determine whether increases in ventilation would occur during intravenous acid infusion even if systemic arterial pH was held constant. In six awake ponies, HCl (500 ml, approximately 0.312 M) was infused into the right atrium at a total dose of 1.0 meq/kg over 18 min while an equivalent dose of NaOH was infused into the left heart to restore systemic arterial pH to normal. Total ventilation increased at the onset of the infusion and remained elevated although systemic arterial pH was normal to slightly alkaline. The increase in ventilation during the initial 2 min of the infusion coincided with an increase in pulmonary arterial PCO2 and decrease in pulmonary arterial pH. As the infusion progressed, however, pulmonary arterial pH and PCO2 returned to near control values due to the recirculation of systemic arterial blood with an acid-base status that had been altered consequent to the hyperventilation. Pulmonary arterial blood pressure was increased significantly during the entire infusion. Infusion of equivalent doses of hypertonic saline led to only minor alterations in the variables that were measured. These experiments demonstrate that this dose of intravenous HCl can increase ventilation independent of reductions in systemic arterial pH. Because increases in ventilation and pulmonary arterial H+ were not well correlated throughout the entire infusion, and pulmonary arterial blood pressure was increased, it is not clear if the mechanism for this ventilatory response is due to stimulation of pulmonary chemoreceptors, pulmonary vascular mechanoreceptors, or some other mechanism unrelated to increases in systemic arterial H+ concentration.  相似文献   

12.
We studied ventilatory responsiveness to hypoxia and hypercapnia in anesthetized cats before and after exposure to 5 atmospheres absolute O2 for 90-135 min. The acute hyperbaric oxygenation (HBO) was terminated at the onset of slow labored breathing. Tracheal airflow, inspiratory (TI) and expiratory (TE) times, inspiratory tidal volume (VT), end-tidal PO2 and PCO2, and arterial blood pressure were recorded simultaneously before and after HBO. Steady-state ventilation (VI at three arterial PO2 (PaO2) levels of approximately 99, 67, and 47 Torr at a maintained arterial PCO2 (PaCO2, 28 Torr) was measured for the hypoxic response. Ventilation at three steady-state PaCO2 levels of approximately 27, 36, and 46 Torr during hyperoxia (PaO2 450 Torr) gave a hypercapnic response. Both chemical stimuli significantly stimulated VT, breathing frequency, and VI before and after HBO. VT, TI, and TE at a given stimulus were significantly greater after HBO without a significant change in VT/TI. The breathing pattern, however, was abnormal after HBO, often showing inspiratory apneusis. Bilateral vagotomy diminished apneusis and further prolonged TI and TE and increased VT. Thus a part of the respiratory effects of HBO is due to pulmonary mechanoreflex changes.  相似文献   

13.
Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia.   总被引:2,自引:0,他引:2  
To test the role of blood flow in tissue hypoxia-related increased veno-arterial PCO(2) difference (DeltaPCO(2)), we decreased O(2) delivery (&Ddot;O(2)) by either decreasing flow [ischemic hypoxia (IH)] or arterial PO(2) [hypoxic hypoxia (HH)] in an in situ, vascularly isolated, innervated dog hindlimb perfused with a pump-membrane oxygenator system. Twelve anesthetized and ventilated dogs were studied, with systemic hemodynamics maintained within normal range. In the IH group (n = 6), hindlimb DO(2) was progressively lowered every 15 min by decreasing pump-controlled flow from 60 to 10 ml. kg(-1). min(-1), with arterial PO(2) constant at 100 Torr. In the HH group (n = 6), hindlimb DO(2) was progressively lowered every 15 min by decreasing PO(2) from 100 to 15 Torr, when flow was constant at 60 ml. kg(-1). min(-1). Limb DO(2), O(2) uptake (VO(2)), and DeltaPCO(2) were obtained every 15 min. Below the critical DO(2), VO(2) decreased, indicating dysoxia, and O(2) extraction ratio (VO(2)/DO(2)) rose continuously and similarly in both groups, reaching a maximal value of approximately 90%. DeltaPCO(2) significantly increased in IH but never differed from baseline in HH. We conclude that absence of increased DeltaPCO(2) does not preclude the presence of tissue dysoxia and that decreased flow is a major determinant in increased DeltaPCO(2).  相似文献   

14.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

15.
Acute hypoxia causes hyperventilation and respiratory alkalosis, often combined with increased diuresis and sodium, potassium, and bicarbonate excretion. With a low sodium intake, the excretion of the anion bicarbonate may be limited by the lower excretion rate of the cation sodium through activated sodium-retaining mechanisms. This study investigates whether the short-term renal compensation of hypoxia-induced respiratory alkalosis is impaired by a low sodium intake. Nine conscious, tracheotomized dogs were studied twice either on a low-sodium (LS = 0.5 mmol sodium x kg body wt-1 x day-1) or high-sodium (HS = 7.5 mmol sodium x kg body wt-1 x day-1) diet. The dogs breathed spontaneously via a ventilator circuit during the experiments: first hour, normoxia (inspiratory oxygen fraction = 0.21); second to fourth hour, hypoxia (inspiratory oxygen fraction = 0.1). During hypoxia (arterial PO2 34.4 +/- 2.1 Torr), plasma pH increased from 7.37 +/- 0.01 to 7.48 +/- 0.01 (P < 0.05) because of hyperventilation (arterial PCO2 25.6 +/- 2.4 Torr). Urinary pH and urinary bicarbonate excretion increased irrespective of the sodium intake. Sodium excretion increased more during HS than during LS, whereas the increase in potassium excretion was comparable in both groups. Thus the quick onset of bicarbonate excretion within the first hour of hypoxia-induced respiratory alkalosis was not impaired by a low sodium intake. The increased sodium excretion during hypoxia seems to be combined with a decrease in plasma aldosterone and angiotensin II in LS as well as in HS dogs. Other factors, e.g., increased mean arterial blood pressure, minute ventilation, and renal blood flow, may have contributed.  相似文献   

16.
To clarify the transport of O(2) across the microvessels in skeletal muscle, we designed an intravital laser microscope that utilizes a phosphorescence quenching technique to determine both the microvascular and tissue PO(2). After we injected the phosphorescent probe into systemic blood, phosphorescence excited by a N(2)-dye pulse laser was detected with a photomultiplier over a 10 microm in diameter area. In vitro and in vivo calibrations confirmed that the present method is accurate for PO(2) measurements in the range of 7-90 Torr (r = 0.958) and has a rapid response time. This method was then used to measure the PO(2) of microvessels with different diameters (40-130 microm) and of interstitial spaces in rat cremaster muscle. These measurements showed a significant drop in PO(2) in the arterioles after branching (from 74.6 to 46.6 Torr) and the presence of a large PO(2) gradient at the blood-tissue interface of arterioles (15-20 Torr). These findings suggest that capillaries are not the sole source of oxygen supply to surrounding tissue.  相似文献   

17.
We previously demonstrated that, in awake goats, 6 h of hypoxic carotid body perfusion during systemic normoxia produced time-dependent hyperventilation that is typical of ventilatory acclimatization to hypoxia (VAH). The hypocapnic alkalosis that occurred could have produced VAH by inducing cerebral vasoconstriction and brain lactic acidosis even though systemic arterial normoxia was maintained. In the present study we tested the hypothesis that hypocapnic alkalosis is a necessary component of VAH. Goats were prepared so that one carotid body could be perfused, from an extracorporeal circuit, with blood in which gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Using this preparation we carried out 4 h of hypoxic carotid body perfusion while maintaining systemic arterial (and brain) normoxia in awake goats. Expired minute ventilation (VE) was measured while CO2 was added to inspired air to maintain normocapnia. Carotid body PCO2 and PO2 were maintained near 40 Torr during the 4-h carotid body perfusion. Control mean VE was 8.65 +/- 0.48 l/min (mean +/- SE). With acute carotid body hypoxia (30 min) VE increased to 21.73 +/- 2.02 l/min (P less than 0.05); over the ensuing 3.5 h of carotid body hypoxia, VE progressively increased to 39.14 +/- 4.14 l/min (P less than 0.05). These data indicate that neither cerebral hypoxia nor hypocapnic alkalosis are required to produce VAH. After termination of the 4-h carotid body stimulation, hyperventilation was not maintained in these studies, i.e., there was no deacclimatization. This suggests that acclimatization and deacclimatization are produced by different mechanisms.  相似文献   

18.
This study investigated the relationships between blood pressure, cortical oxygen pressure, and extracellular striatal dopamine in the brain of adult cats during hemorrhagic hypotension and re-transfusion. Oxygen pressure in the blood of the cortex was measured by the oxygen dependent quenching of phosphorescence and extracellular dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) by in vivo microdialysis. Following a 2 h stabilization period after implantation of the microdialysis probe in the striatum, the mean arterial blood pressure (MAP) was decreased in a stepwise manner from 132 ± 2 Torr (control) to 90 Torr, 70 Torr and 50 Torr, holding the pressure at each level for 15 min. The whole blood was then retransfused and measurements were continued for 90 min. As the MAP was lowered there was a decrease in arterial pH, from a control value of 7.37 ± 0.05 to 7.26 ± 0.06. The PaCO2 decreased during bleeding from 32.3 ± 4.8 Torr to 19.6 ± 3.6 Torr and returned to 30.9 ± 3.9 Torr after retransfusion. The PaO2 was 125.9 ± 15 Torr during control conditions and did not significantly change during bleeding. Cortical oxygen pressure decreased with decrease in MAP, from 50 ± 2 Torr (control) to 42 ± 1 Torr, 31 ± 2 Torr and 22 ± 2 Torr, respectively. A statistically significant increase in striatal extracellular dopamine, to 2,580 ± 714% of control was observed when MAP decreased to below 70 Torr and cortical oxygen pressure decreased to below 31 Torr. When the MAP reached 50 Torr, the concentration of extracellular dopamine increased to 18,359 ± 2,764% of the control value. A statistically significant decrease in DOPAC and HVA were observed during the last step of bleeding. The data show that decreases in systemic blood pressure result in decrease in oxygen pressure in the microvasculature of the cortex, suggesting vascular dilation is not sufficient to result in a full compensation for the decreased MAP. The decrease in cortical oxygen pressure to below 32 Torr is accompanied by a marked increase in extracellular dopamine in the striatum, indicating that even such mild hypoxia can induce significant disturbance in brain metabolism.  相似文献   

19.
After 30-min or longer incubation of rabbit blood under 42 degrees C the blood O2 affinity was increased. During governed hyperthermia of conscious rabbits PO2, pH and the oxygen content in the mixed venous blood were decreased. Similar events were observed after 1 hour from the ceasing of hyperthermia. In the real blood circulation the oxygen affinity of haemoglobin was decreased because of the higher temperature. But after the recalculation of P50 to the standard conditions (t = 37 degrees C, pH 7.4, PCO2 = 40 Torr) it's value was below the initial one by 4.0 +/- 0.68 Torr. The mechanism of the increase of the oxygen affinity of haemoglobin is discussed.  相似文献   

20.
O2 concentration, PO2, PCO2, pH, osmolarity, lactate (LA), and hemoglobin (Hb) concentrations in deep forearm venous blood were repeatedly measured during submaximal exercise of forearm muscles. Concentrations of arterial blood gases were determined at rest and during exercise. Experiments were conducted under normoxia and hypobaric hypoxia (PB = 465 Torr). In arterial blood, data obtained during exercise were the same as those obtained during rest under either normoxia or hypoxia. In venous muscular blood, PO2 and O2 concentration were lower at rest and during exercise in hypoxia. The muscular arteriovenous O2 difference during exercise in hypoxia was increased by no more than 10% compared with normoxia, which implied that muscular blood flow during exercise also increased by the same percentage, if we assume that exercise O2 consumption was not affected by hypoxia. Despite increased [LA], the magnitude of changes in PCO2 and pH in hypoxia were smaller than in normoxia during exercise and recovery; this finding is probably due to the increased blood buffer value induced by the greater amount of reduced Hb in hypoxia. Hence all the changes occurring in hypoxia showed that local metabolism was less affected than we expected from the decrease in arterial PO2. The rise in [Hb] that occurred during exercise was lower in hypoxia. Possible underlying mechanisms of the [Hb] rise during exercise are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号