首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Transfer of apolipoprotein (apo) molecules between lipoprotein particles is an important factor in modulating the metabolism of the particles. Although the phenomenon is well established, the kinetics and molecular mechanism of passive apo exchange/transfer have not been defined in detail. In this study, the kinetic parameters governing the movement of radiolabeled apoC molecules from human very low density lipoprotein (VLDL) to high density lipoprotein (HDL3) particles were measured using a manganese phosphate precipitation assay to rapidly separate the two types of lipoprotein particles. In the case of VLDL labeled with human [14C]apoCIII1, a large fraction of the apoCIII1 transfers to HDL3 within 1 minute of mixing the two lipoproteins at either 4 degrees or 37 degrees C. As the diameter of the VLDL donor particles is decreased from 42-59 to 23-25 nm, the size of this rapidly transferring apoCIII1 pool increases from about 50% to 85%. There is also a pool of apoCIII1 existing on the donor VLDL particles that transfers more slowly. This slow transfer follows a monoexponential rate equation; for 35-40 nm donor VLDL particles the pool size is approximately 20% and the t1/2 is approximately 3 h. The flux of apoCIII molecules between VLDL and HDL3 is bidirectional and all of the apoCIII seems to be available for exchange so that equilibrium is attained. It is likely that the two kinetic pools of apoCIII are related to conformational variations of individual apo molecules on the surface of VLDL particles. The rate of slow transfer of apoCIII1 from donor VLDL (35-40 nm) to acceptor HDL3 is unaffected by an increase in the acceptor to donor ratio, indicating that the transfer is not dependent on collisions between donor and acceptor particles. Consistent with this, apoCIII1 molecules can transfer from donor VLDL to acceptor HDL3 particles across a 50 kDa molecular mass cutoff semipermeable membrane separating the lipoprotein particles. These results indicate that apoC molecules transfer between VLDL and HDL3 particles by an aqueous diffusion mechanism.  相似文献   

2.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

3.
A method has been described for the measurement of apoB concentration and specific activity in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) during metabolic studies. For measurement of specific activity, apoB was separated from other apolipoproteins and lipids by precipitation in, and subsequent washing with, isopropanol. For determination of apoB concentration, equal volumes of lipoprotein and isopropanol were mixed, and the protein content of the apoB precipitate was measured by the difference between total lipoprotein protein and the protein measured in the supernatant. Evidence that there was no apoB solubilization in isopropanol and that precipitated apoB was virtually free of soluble apolipoproteins was obtained by electrophoresis. Lipid contamination of the apoB precipitate was less than 1%. The methods were applicable to VLDL, intermediate density lipoprotein (IDL), and LDL from normolipemic patients with protein concentrations between 187 micrograms/ml and 1898 micrograms/ml. The data obtained using isopropanol were highly correlated with those using tetramethylurea, and recoveries of apoB were similar. Furthermore, the isopropanol method has been demonstrated to yield consistent data for apoB specific activities in a study of VLDL, IDL, and LDL metabolism.  相似文献   

4.
5.
The VLDL transport vesicle (VTV) mediates the transport of nascent VLDL particles from the ER to the Golgi and plays a key role in VLDL-secretion from the liver. The functionality of VTV is controlled by specific proteins; however, full characterization and proteomic profiling of VTV remain to be carried out. Here, we report the first proteomic profile of VTVs. VTVs were purified to their homogeneity and characterized biochemically and morphologically. Thin section transmission electron microscopy suggests that the size of VTV ranges between 100 nm to 120 nm and each vesicle contains only one VLDL particle. Immunoblotting data indicate VTV concentrate apoB100, apoB48 and apoAIV but exclude apoAI. Proteomic analysis based on 2D-gel coupled with MALDI-TOF identified a number of vesicle-related proteins, however, many important VTV proteins could only be identified using LC-MS/MS methodology. Our data strongly indicate that VTVs greatly differ in their proteome with their counterparts of intestinal origin, the PCTVs. For example, VTV contains Sec22b, SVIP, ApoC-I, reticulon 3, cideB, LPCAT3 etc. which are not present in PCTV. The VTV proteome reported here will provide a basic tool to study the mechanisms underlying VLDL biogenesis, maturation, intracellular trafficking and secretion from the liver.  相似文献   

6.
The transfer of triglyceride from sites of synthesis in the endoplasmic reticulum to cytoplasmic lipid droplets and nascent VLDL (very low density lipoproteins) in rat liver in vivo has been examined with [3H]glycerol, cell fractionation, and electron microscopy. Rates of mass transfer of newly synthesized triglyceride were estimated from the specific radioactivity of triglyceride present in microsomal membranes and the radioactivity observed in recipient triglyceride pools. Fasting decreased the transfer of triglyceride to nascent VLDL without affecting transfer to lipid droplets. Stimulation of triglyceride synthesis with 2-tetradecylglycidic acid (TDGA) increased transfer of triglyceride to nascent VLDL 5-fold, and to lipid droplets 14-fold, 1 hr after TDGA administration. Triglyceride transfer to nascent VLDL was increased 6-fold, and to lipid droplets 37-fold, above control rates 6 hr following TDGA treatment, indicative of saturation of triglyceride assembly into nascent VLDL and storage of excess triglyceride in lipid droplet reservoirs. These liver triglyceride pools were concurrently expanded and electron microscopy demonstrated more abundant VLDL particles in the endoplasmic reticulum together with a proliferation of lipid droplets in hepatocytes. TDGA progressively decreased hepatic sn-glycerol-3-phosphate in fasting rats while triglyceride synthesis increased, indicating that sn-glycerol-3-phosphate does not limit the rate of triglyceride synthesis in this metabolic state. Results implicate triglyceride transfer from endoplasmic reticulum membranes to nascent VLDL as a regulated determinant of hepatic VLDL assembly and VLDL triglyceride secretion in vivo.  相似文献   

7.
8.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

9.

Introduction

Gout results from an innate immune response to monosodium urate (MSU) crystals deposited in joints. Increased very low-density lipoprotein (VLDL) has been associated with gout. The apolipoprotein B (apo B), which is present on VLDL, regulates neutrophil response to MSU crystals and has been positively associated with gout. Furthermore, the gene (A1CF) encoding the complementation factor for the APOB mRNA-editing enzyme is associated with urate levels. However, the relationship of apo B and VLDL with gout and hyperuricaemia (HU) is still unclear. Therefore, we tested the association of VLDL and apo B with HU and with gout compared to HU.

Methods

New Zealand European (n = 90) and Māori and Pacific Island (Polynesian) (n = 90) male gout case and control sample sets were divided into normouricaemia (NU), asymptomatic HU and gout groups. Size exclusion chromatography and enzyme-linked immunosorbant assay was used to measure VLDL and apo B. Multivariate logistic regression was used to assess the risk of gout and HU per unit change in VLDL and apo B.

Results

Increased levels of VLDL triglycerides (Tg) were observed in the gout sample set compared to NU and HU in Europeans (P = 1.8 × 10-6 and 1 × 10-3, respectively), but only compared to NU in Polynesians (P = 0.023). This increase was driven by increased number of VLDL particles in the European participants and by the Tg-enrichment of existing VLDL particles in the Polynesian participants. Each mmol/L increase in VLDL Tg was significantly associated with gout in the presence of HU in Europeans, with a similar trend in Polynesians (OR = 7.61, P = 0.011 and 2.84, P = 0.069, respectively). Each μmol/L increase in total apo B trended towards decreased risk of HU (OR = 0.47; P = 0.062) and, conversely, with increased risk of gout compared to HU (OR = 5.60; P = 0.004).

Conclusions

Increased VLDL Tg is associated with the risk of gout compared to HU. A genetic approach should be taken to investigate the possibility for causality of VLDL in gout. Apolipoprotein B may have pleiotropic effects in determining HU and gout.  相似文献   

10.
We have studied the consequences of alterations to hepatic apoB mRNA editing on the biosynthesis and intracellular distribution of newly synthesized apoB variants together with their mass distribution in nascent Golgi very low density lipoproteins (VLDL). Radiolabeled liver membrane fractions were prepared from control or hypothyroid animals and separated by discontinuous sucrose gradient centrifugation. Hepatic apoB-100 synthesis in these groups accounted for 93-100% of total newly synthesized apoB species of Golgi fractions recovered from the sucrose gradients (G1 and G2). The analogous fractions isolated from the livers of hyperthyroid (treated with 3,3',5-triiodo-L-thyronine, T3) animals revealed that newly synthesized apoB-100 accounted for only 46 +/- 10% (G1) and 24 +/- 11% (G2), respectively, of total newly synthesized apoB. ApoB-100 mass in nascent Golgi VLDL from control and hypothyroid G1 fractions represented 70-78% total apoB as determined by Western blot analysis. By contrast, Golgi VLDL from hyperthyroid animals contained predominantly (greater than 78%) apoB-48 as the apoB species. Electron microscopy revealed that the morphology and size distribution of hyperthyroid G1 VLDL were similar to particles isolated from control animals. Thus, despite a profound reduction in the proportion of apoB-100 mRNA species containing an unmodified codon (CAA, B-GLN) at position 2153 in hyperthyroid animals (6 +/- 1% vs 50-61% in control and hypothyroid animals) apoB-100 biosynthesis was detectable in a defined membrane fraction isolated by discontinuous sucrose gradient centrifugation. However, no apoB-100 synthesis was detectable in liver samples prepared by Polytron disruption in Triton-containing buffers. These data suggest that effective hepatic VLDL assembly and secretion in the T3-treated rat continues despite a profound reduction in apoB-100 biosynthesis and implies that apoB-48 contains the requisite domains to direct this process, a situation analogous to that in the intestine.  相似文献   

11.
12.
Very low density lipoprotein (VLDL) has been isolated from normal (n) and dietary-induced hypercholesterolemic (hc) rabbits. Incorporation of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene into the lipid domains of both n VLDL and hc VLDL allowed assessment of the fluidity characteristics of these particles, utilizing fluorescence polarization techniques. Over the temperature range of 5° – 45°, the lipid region of n VLDL consists of an invariant phase, characterized by a microviscosity, η, at 30° of 0.6 ± 0.2 poise and a fusion activation energy, ΔE, of 7.6 ± 1.5 kcal/mole. The lipid region of hc VLDL, over the same temperature range, also is invariant and is characterized by a value of η at 30° of 4.6 ± 0.3 poise, and a ΔE of 7.8 ± 1.5 kcal/mole. Thus, large differences in the fluidit of the lipid in n VLDL and hc VLDL are evident, most probably due to the greatly increased content of cholesterol esters in hc VLDL, compared to n VLDL.  相似文献   

13.
The formation of low density lipoprotein (LDL) from very low density lipoprotein (VLDL) was studied after injecting 14C-radiomethylated or 125I-radioiodinated VLDL into rats. VLDL and LDL B apoprotein specific radioactivity time curves were obtained after tetramethylurea extraction of the lipoproteins. In all experiments, the specific activity of LDL B apoprotein did not intercept the VLDL curve at maximal heights, suggesting that not all LDL B apoprotein is derived from VLDL B apoprotein. Further subfractionation of LDL into the Sf 12-20, 5-12, and 0-5 ranges showed that most (65%) LDL B apoprotein was present in the Sf 0-5 fraction and that only a small proportion (6-15%) of this fraction was derived from VLDL. However, the curves obtained for the Sf 12-20 and 5-12 subfractions were consistent with a precursor-product relationship in which all of these fractions were derived entirely from VLDL catabolism. These results contrasted strikingly with similar data obtained for normal humans in which all LDL is derived from VLDL. In the rat, it appears that most of the B apoprotein in the Sf 0-5 range, which contains 65% of the total LDL B apoprotein, enters the plasma independently of VLDL secretion.  相似文献   

14.
Monoclonal antibodies, prepared against rat apoB, were used to examine apoB structure in serum lipoproteins and characterize the forms and localization of apoB in liver membrane fractions and cultured hepatocytes. Of the several antibodies obtained, four, having separate epitopes, were characterized. Western blot analysis showed that three (DB11, F4, and LB14) antibodies recognized both apoBL and apoBS. One antibody (HB41) recognized only apoBL. This antibody showed unusual properties. Competition ELISA assays showed that the epitope recognized by HB41 was more effectively expressed on low density lipoproteins (LDL) compared to very low density lipoproteins (VLDL). In addition, treatment of lipoproteins with detergents and sulfhydryl reducing agents also increased the expression of the HB41 epitope. Since HB41 has been found to inhibit LDL binding to hepatocyte receptors, these data indicate that the HB41 epitope is located on the carboxy-terminal side of the apoBS junction (probably within the LDL receptor binding domain). Western blotting hepatic microsomal subfractions showed that in the rough and smooth microsomes, HB41 recognized only apoBL, while in the Golgi it recognized both apoBL and a protein having a molecular weight slightly smaller. In contrast, Western blotting with a polyclonal antibody known to recognize both apoBL and apoBS showed that, in rough and smooth microsomes, proteins in addition to apoBL and apoBS having molecular weights between 120,000 and 30,000 were recognized. These proteins, likely to be proteolytic fragments of apoB, were barely detectable in the Golgi. Additional biosynthetic studies show that the [35S]methionine-labeled proteins smaller than apoB were immunoprecipitated from the rough microsome subfraction. Pulse-chase experiments show that these are produced with the same kinetics as full-size apoBL and apoBS, indicating that they are not incomplete nascent chains. Finally, immunofluorescence microscopy was used to determine the localization of monoclonal epitopes. ApoB monoclonal antibodies that recognized exclusively apoBL (HB41) and apoBL and apoBS (DB11) produced an immunofluorescence pattern characteristic of the endoplasmic reticulum, but not the Golgi. These data suggest that, in cultured rat hepatocytes, the majority of both molecular weight forms of apoB are localized in the endoplasmic reticulum, the initial site of VLDL assembly. The additional finding that proteolytic fragments of apoB are enriched in the microsomal fraction suggests that if the proteolysis occurs during subcellular fractionation, immature apoB is susceptible to proteolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
The possibility that apo-B is phosphorylated was examined using cultured rat hepatocytes. Rabbit antiserum prepared against rat apo-B was found to specifically react with both large and small molecular weight apo-B (by electroblotting assay and by immunoprecipitation of [35S]methionine-labeled proteins synthesized and secreted by hepatocytes). Following a 4-h incubation with [35P]orthophosphate, immunoprecipitation, and sodium dodecyl sulfate electrophoresis, an autoradiographic band corresponding to small molecular weight apo-B was obtained from cells and medium. Compared to the relative abundance of 32P which was associated with secreted small molecular weight apo-B, there was little (if any) detected in large molecular weight apo-B. Addition of excess unlabeled apo-B (obtained from rat serum) totally competed with the specific antiserum for this radioactive protein, indicating it was antigenically related to apo-B. Moreover, isolation of the 32P-labeled apo-B electrophoretic band, followed by acid hydrolysis and phosphoamino acid analysis, showed that at least 20% of the 32P originally associated with small molecular weight apo-B was in the form of phosphoserine. Control experiments ruled out the possible contamination of apo-B with phospholipid as well as the possibility that the phosphoserine produced by acid hydrolysis could have been derived from phosphatidylserine. To examine the relevance of these data to the in vivo state, rats were injected with [32P]orthophosphate. Immunoprecipitation of their livers followed by autoradiographic analysis showed the presence of 32P in small molecular weight apo-B. These data show for the first time that small molecular weight apo-B is synthesized as a phosphoserine containing protein.  相似文献   

17.
Although the human homologue of SND p102, p100 coactivator, was initially described as a nuclear protein, the p100 coactivator protein family members have non-nuclear localization in mammalian cells with active lipid handling, storage, and secretion. However, their role in lipid homeostasis remains unresolved. Here, we investigate the distribution of the rat homologue SND p102 (also called SND1) and its association with newly formed lipid droplets in the liver parenchyma and cultured hepatocytes. Sucrose gradient fractionation showed that SND p102 cofractionated with endoplasmic reticulum and Golgi markers. Such cofractionation was not altered in regenerating steatotic rat liver. However, SND p102 was also detected in lipid droplets from regenerating liver, showing a specific directionalization to the least dense ones. Confocal microscopy of cultured hepatocytes confirmed the findings of gradient fractionation. In addition, p100 coactivator was consistently encountered in microsomes and lipid droplets in control and oleate-treated HepG2 cells. The total amount of SND p102 in hepatocytes was similar in both conditions, suggesting a specific translocation of the protein. Our findings indicate that SND p102 and the human p100 coactivator have a ubiquitous cytoplasmic distribution in hepatocytes and that steatogenic conditions promote the targeting of SND p102 from other cell compartments to specific low density lipid droplets.  相似文献   

18.
The laying hen expresses two different lipoprotein transport receptors in cell-specific fashion. On the one hand, a 95-kDa oocyte membrane protein mediates the uptake of the major yolk precursors, very low density lipoprotein, and vitellogenin; on the other hand, somatic cells synthesize a 130-kDa receptor that is involved in the regulation of cellular cholesterol homeostasis (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Here we show that the oocyte-specific receptor binds, in addition to the yolk precursor proteins, an apolipoprotein of mammalian origin, apolipoprotein E. Ligand blotting, a solid-phase binding assay, and antireceptor antibodies were employed to demonstrate that binding of vitellogenin, very low density lipoprotein (via apolipoprotein B), and apolipoprotein E occurs to closely related, if not identical, sites on the 95-kDa oocyte receptor. The binding properties of lipovitellin, which harbors the receptor recognition site of vitellogenin, are analogous to those of apolipoprotein E: both require association with lipid for expression of functional receptor binding. The ligand specificity of the avian oocyte lipoprotein receptor supports the hypothesis that vitellogenin, which has evolved in oviparous species, represents a counterpart to mammalian apolipoprotein E.  相似文献   

19.
We investigated the properties of very low density lipoprotein (VLDL) from two types of Watanabe heritable hyperlipidemic (WHHL) rabbits: one with a high incidence of coronary atherosclerosis (type 1), and the other with a low incidence (type 2). When incubated with mouse peritoneal macrophages, VLDL from type 1 WHHL rabbit (type 1-VLDL) stimulated cholesteryl ester synthesis 10.5-fold more than VLDL from the type 2 WHHL rabbit (type 2-VLDL) did. Moreover, a similar difference was seen in the stimulation of cholesteryl ester synthesis in peritoneal macrophages isolated from the WHHL rabbits. The mass ratios of cholesterol to protein in type 1- and type 2-VLDL were 5.69 and 2.05, respectively. Agarose gel electrophoresis of type 1-VLDL showed beta mobility, and that of type 2-VLDL showed pre-beta mobility. No difference was seen between the sizes of VLDL particles of the two types. The amount of apolipoprotein E in type 1-VLDL was greater than that in type 2-VLDL. In conclusion, the difference between type 1 and type 2 WHHL rabbits is at least partly due to the presence in type 1 animals of VLDL particles rich in cholesteryl esters and apolipoprotein E, particles which are very similar to beta-VLDL in conformation.  相似文献   

20.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号