首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxiredoxins are antioxidant enzymes whose peroxidase activity depends on a redox-sensitive cysteine residue at the active center. In this study we investigated properties of the active center cysteine of bovine 1-Cys peroxiredoxin using a recombinant protein (BRPrx). The only cysteine residue of the BRPrx molecule was oxidized rapidly by an equimolar peroxide or peroxynitrite to the cysteine sulfenic acid. Approximate rates of oxidation of BRPrx by different peroxides were estimated using selenium glutathione peroxidase as a competitor. Oxidation of the active center cysteine of BRPrx by H2O2 proceeded only several times slowly than that of the selenocysteine of glutathione peroxidase. The rate of oxidation varied depending on peroxides tested, with H2O2 being about 7 and 80 times faster than tert-butyl hydroperoxide and cumene hydroperoxide, respectively. Peroxynitrite oxidized BRPrx slower than H2O2 but faster than tert-butyl hydroperoxide. Further oxidation of the cysteine sulfenic acid of BRPrx to higher oxidation states proceeded slowly. Oxidized BRPrx was reduced by dithiothreitol, dihydrolipoic acid, and hydrogen sulfide, and demonstrated peroxidase activity (about 30 nmol/mg/min) with these reductants as electron donors. beta-Mercaptoethanol formed a mixed disulfide and did not support peroxidase activity. Oxidized BRPrx did not react with glutathione, cysteine, homocysteine, N-acetyl-cysteine, and mercaptosuccinic acid.  相似文献   

2.
Glutathione (GSH) was oxidized to GSSG in the presence of H2O2, tyrosine, and peroxidase. During the GSH oxidation catalyzed by lactoperoxidase, O2 was consumed and the formation of glutathione free radical was confirmed by ESR of its 5,5'-dimethyl-1-pyrroline-N-oxide adduct. When lactoperoxidase was replaced by thyroid peroxidase in the reaction system, the consumption of O2 and the formation of the free radical became negligibly small. These results led us to conclude that, in the presence of H2O2 and tyrosine, lactoperoxidase and thyroid peroxidase caused the one-electron and two-electron oxidations of GSH, respectively. It was assumed that GSH is oxidized by primary oxidation products of tyrosine, which are phenoxyl free radicals in lactoperoxidase reactions and phenoxyl cations in thyroid peroxidase reactions. When tyrosine was replaced by diiodotyrosine or 2,6-dichlorophenol, the difference in the mechanism between lactoperoxidase and thyroid peroxidase disappeared and both caused the one-electron oxidation of GSH. Iodides also served as an effective mediator of GSH oxidation coupled with the peroxidase reactions. In this case the two peroxidases both caused the two-electron oxidation of GSH.  相似文献   

3.
The activation of 14C-labeled estradiol by "true" and "pseudo" peroxidases to form conjugates and other products was compared in four model systems using H2O2, glutathione, Mn2+ or irradiated riboflavin. Albumin was used as acceptor except in the glutathione system. The binding of estradiol to glutathione in the presence of the true peroxidases, lacto- or uterine peroxidase (no H2O2 added), was also examined and the conditions shown to differ from those required with the pseudoperoxidases, microperoxidase or trypsin-digested cytochrome c. The conjugates were purified by chromatography after elution from Amberlite XAD-2 and the relative amounts of these products assessed by autoradiography. The ratio of steroid to glutathione in the main water-soluble metabolite formed with lactoperoxidase was found to be approx 1:1 in a double label experiment with [14C]estradiol and [3H]glutathione. It was also shown, using estradiol labeled with 3H in different positions of the steroid molecule, that lactoperoxidase acts non-specifically in catalyzing the formation of glutathionyl conjugates as indicated by the release of 3H2O. The possible role of peroxidase and glutathione in the metabolism of estrogens and in the formation of artifactual products is discussed.  相似文献   

4.
The ability of neurons to detoxify exogenously applied peroxides was analyzed using neuron-rich primary cultures derived from embryonic rat brain. Incubation of neurons with H2O2 at an initial concentration of 100 microM (300 nmol/3 ml) led to a decrease in the concentration of the peroxide, which depended strongly on the seeding density of the neurons. When 3 x 10(6) viable cells were seeded per dish, the half-time for the clearance by neurons of H2O2 from the incubation buffer was 15.1 min. Immediately after application of 100 microM H2O2 to neurons, glutathione was quickly oxidized. After incubation for 2.5 min, GSSG accounted for 48% of the total glutathione. Subsequent removal of H2O2 caused an almost complete regeneration of the original ratio of GSH to GSSG within 2.5 min. Compared with confluent astroglial cultures, neuron-rich cultures cleared H2O2 more slowly from the incubation buffer. However, if the differences in protein content were taken into consideration, the ability of the cells to dispose of H2O2 was identical in the two culture types. The clearance rate by neurons for H2O2 was strongly reduced in the presence of the catalase inhibitor 3-aminotriazol, a situation contrasting with that in astroglial cultures. This indicates that for the rapid clearance of H2O2 by neurons, both glutathione peroxidase and catalase are essential and that the glutathione system cannot functionally compensate for the loss of the catalase reaction. In addition, the protein-normalized ability of neuronal cultures to detoxify exogenous cumene hydroperoxide, an alkyl hydroperoxide that is reduced exclusively via the glutathione system, was lower than that of astroglial cells by a factor of 3. These results demonstrate that the glutathione system of peroxide detoxification in neurons is less efficient than that of astroglial cells.  相似文献   

5.
We report that a lactoperoxidase (LPO) metabolite derived from nitrite (NO2-) catalyses one-electron oxidation of biological electron donors and antioxidants such as NADH, NADPH, cysteine, glutathione, ascorbate, and Trolox C. The radical products of the reaction have been detected and identified using either direct EPR or EPR combined with spin trapping. While LPO/H2O2 alone generated only minute amounts of radicals from these compounds, the yield of radicals increased sharply when nitrite was also present. In aerated buffer (pH 7) the nitrite-dependent oxidation of NAD(P)H by LPO/H2O2 produced superoxide radical, O2*-, which was detected as a DMPO/*O2H adduct. We propose that in the LPO/H2O2/NO2-/biological electron donor systems the nitrite functions as a catalyst because of its preferential oxidation by LPO to a strongly oxidizing metabolite, most likely a nitrogen dioxide radical *NO2, which then reacts with the biological substrates more efficiently than does LPO/H2O2 alone. Because both nitrite and peroxidase enzymes are ubiquitous our observations point at a possible mechanism through which nitrite might exert its biological and cytotoxic action in vivo, and identify some of the physiological targets which might be affected by the peroxidase/H2O2/nitrite systems.  相似文献   

6.
The kinetics of the cytolytic activity expressed by lactoperoxidase and horseradish peroxidase toward erythrocytes in the presence of H2O2 and iodide have been investigated at physiological pH. The action of both enzymes was found to be very similar with respect to their kinetic mechanisms. Both enzymes showed saturation kinetics at higher enzyme concentrations under conditions where substrate concentrations were not limiting. Optimal concentrations of H2O2 and iodide were found to be 40 and 25 microM, respectively, for both enzymes. Higher concentrations of H2O2 inhibited the cytolytic activity. The pH dependence of the cytolytic reaction is also very similar for both enzymes, showing maximal activity at about pH 6.3. Moreover, the cytolytic activities of both enzymes were inhibited by tyrosine, tryptophan, cysteine, and to a lesser extent by histidine. We conclude from these data that the mechanisms of horseradish peroxidase and lactoperoxidase in promoting the lysis of erythrocytes are closely related if not identical.  相似文献   

7.
Nitrofuran AF-2 displayed greater inhibitory effect than did nitrofuran Z when a mixed bacterial culture, including several proteolytic bacteria, isolated from shrimp was subjected to these compounds in vitro. Nitrofuran Z exhibited greater bactericidal properties than did chlortetracycline in all cultures used. Only 10 mug of nitrofuran AF-2 per ml was sufficient to inhibit the growth of mixed bacteria in nutrient broth, whereas 50 mug of nitrofuran Z per ml was necessary to accomplish the same inhibition. A 50-mug amount of chlortetracycline per ml displayed about the same inhibitory effect as either 10 mug of AF-2 per ml or 20 mug of Z per ml. The isolated proteolytic bacteria showed greater suppression of growth when subjected to AF-2 than when subjected to Z; however, both nitrofurans were effective in preventing growth. The addition of either 1 mug of AF-2 per ml or 5 mug of Z per ml to nutrient broth inhibited the growth of Achromobacter aquarmarinus, whereas chlortetracycline was less effective, requiring about 20 mug to suppress growth to the same degree.  相似文献   

8.
Clem, W. H. (University of Washington, Seattle), and S. J. Klebanoff. Inhibitory effect of saliva on glutamic acid accumulation by Lactobacillus acidophilus and the role of the lactoperoxidase-thiocyanate system. J. Bacteriol. 91:1848-1853. 1966.-Saliva contains an antimicrobial system which inhibits the growth of Lactobacillus acidophilus, as well as a number of other organisms, in complete growth medium. This antimicrobial system consists of the salivary peroxidase (lactoperoxidase) and thiocyanate ions, and requires the presence of H(2)O(2). Saliva inhibits the accumulation of glutamic acid and certain other amino acids by resting cells. This effect of saliva is decreased by dialysis, and thiocyanate ions restore the inhibitory effect of dialyzed saliva. The inhibitory effect of saliva is decreased by heat (100 C, 10 min), and lactoperoxidase restores the inhibitory effect of heated saliva. Thus, the inhibition of glutamic acid accumulation by saliva appears to be due in part to the lactoperoxidase-thiocyanate antimicrobial system. H(2)O(2) increases the inhibitory effect of both saliva and the lactoperoxidase-thiocyanate system on glutamic acid accumulation. The inhibition of glutamic acid accumulation is not preceded by a loss in microbial viability. The glutamic acid accumulated by L. acidophilus under the conditions employed remains largely (over 90%) as free glutamic acid. This suggests that saliva and the lactoperoxidase-thiocyanate-H(2)O(2) system inhibit the net transport of glutamic acid into the cell.  相似文献   

9.
To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN-/H2O2 system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by 15N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN-) as one of the oxidation products correlated well with the activity of the LPO/SCN-/H2O2 system and was maximum when the concentrations of the H2O2 and SCN- were nearly the same and the pH was less than 6.0. At [H2O2]/[SCN-] = 1, OSCN- decomposed very slowly back to thiocyanate. When the ratio [H2O2]/[SCN-] was above 2, formation of CN- was observed, which was confirmed by 15N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H2O2 in the presence of LPO does not take place at pH greater than 8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.  相似文献   

10.
By isolation of a mixed disulfide product of glutathione and cysteine, glutathione peroxidase was shown to be highly specific for only one donor substrate. Using the coupled assay of NADPH and yeast glutatione reductase, which is highly specific for flutathione disulfide, it was shown that the apparent inhibition of glutathione peroxidase by mercaptoethanol can be described kinetically and that it is competitive with glutathione. Also, when limiting amounts of hydroperoxide were present in the reaction mixture with mercaptoethanol or cysteine, the total amount of glutathione disulfide produced decreased as compared with that in a reaction mixture without mercaptoethanol or cysteine. This finding is consistent with enzymatic formation of mixed disulfides. Data presented suggest that the selenium in glutathione peroxidase was oxidized to a seleninic acid in the absence of glutathione. These results can be explained by a mechanism for glutathione peroxidase wherein the selenium atom is the only atom in the enzyme that undergoes oxidation reduction.  相似文献   

11.
In the present study, we used a recombinant filamentous fungus strain, Aspergillus niger B1-D, as a model system, and investigated the antioxidant defences in this organism. Our findings indicate that pretreatment with low concentrations of H(2)O(2) completely prevents killing by this oxidant at high concentrations. It shows that A. niger adapts to exposure to H(2)O(2) by reducing growth and inducing a number of antioxidant enzyme activities, including superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, of which the induction of catalase is the most pronounced. Moreover the decline of these antioxidant enzymes activities after H(2)O(2) detoxification, coincides with recommencement of growth. Results from monitoring the extracellular H(2)O(2) concentration clearly indicate a very rapid detoxification rate for H(2)O(2) in adapted A. niger cultures. A mathematical model predicts only very low concentrations of intracellular H(2)O(2) accumulating in such cultures. Our results also show that glutathione plays a role in the oxidative defence against H(2)O(2) in A. niger. On addition of H(2)O(2), the intracellular pool of glutathione increases while the redox state of glutathione becomes more oxidized.  相似文献   

12.
Spectral scans in both the visible (650-450 nm) and the Soret (450-380 nm) regions were recorded for the native enzyme, Compound II, and Compound III of lactoperoxidase and thyroid peroxidase. Compound II for each enzyme (1.7 microM) was prepared by adding a slight excess of H2O2 (6 microM), whereas Compound III was prepared by adding a large excess of H2O2 (200 microM). After these compounds had been formed it was observed that they were slowly reconverted to the native enzyme in the absence of exogenous donors. The pathway of Compound III back to the native enzyme involved Compound II as an intermediate. Reconversion of Compound III to native enzyme was accompanied by the disappearance of H2O2 and generation of O2, with approximately 1 mol of O2 formed for each 2 mol of H2O2 that disappeared. A scheme is proposed to explain these observations, involving intermediate formation of the ferrous enzyme. According to the scheme, Compound III participates in a reaction cycle that effectively converts H2O2 to O2. Iodide markedly affected the interconversions between native enzyme, Compound II, and Compound III for lactoperoxidase and thyroid peroxidase. A low concentration of iodide (4 microM) completely blocked the formation of Compound II when lactoperoxidase or thyroid peroxidase was treated with 6 microM H2O2. When the enzymes were treated with 200 microM H2O2, the same low concentration of iodide completely blocked the formation of Compound III and largely prevented the enzyme degradation that otherwise occurred in the absence of iodide. These effects of iodide are readily explained by (i) the two-electron oxidation of iodide to hypoiodite by Compound I, which bypasses Compound II as an intermediate, and (ii) the rapid oxidation of H2O2 to O2 by the hypoiodite formed in the reaction between Compound I and iodide.  相似文献   

13.
The radical scavenger 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO(*)) and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were used in conjunction with mass spectrometry to identify the protein-based radical sites of the H(2)O(2)-tolerant ascorbate peroxidase (APX) of the red alga Galdieria partita and the H(2)O(2)-sensitive stromal APX of tobacco. A cysteine residue in the vicinity of the propionate side chain of heme in both enzymes was labeled with TEMPO(*) and DMPO in an H(2)O(2)-dependent manner, indicating that these cysteine residues form thiyl radicals through interaction of APX with H(2)O(2). TEMPO(*) bound to the cysteine thiyl radicals, and sulfinylated and sulfonylated them. Other oxidized cysteine residues were found in both APXs. Experiments with a cysteine-to-serine point mutation showed that formation of TEMPO adducts and subsequent oxidation of the cysteine residue located near the propionate group of heme leads to loss of enzyme activity, in particular in the Galdieria APX. When treated with glutathione and H(2)O(2), both cysteine residues in both enzymes were glutathionylated. These results suggest that, under oxidative stress in vivo, cysteine oxidation is involved in the inactivation of APXs in addition to the proposed H(2)O(2)-mediated crosslinking of heme to the distal tryptophan residue [Kitajima S, Shimaoka T, Kurioka M & Yokota A (2007) FEBS J274, 3013-3020], and that glutathione protects APX from irreversible oxidation of the cysteine thiol and loss of enzyme activity by binding to the cysteine thiol group.  相似文献   

14.
The reaction of nitrite (NO2-) with horseradish peroxidase and lactoperoxidase was studied. Sequential mixing stopped-flow measurements gave the following values for the rate constants of the reaction of nitrite with compounds II (oxoferryl heme intermediates) of horseradish peroxidase and lactoperoxidase at pH 7.0, 13.3 +/- 0.07 mol(-1) dm3 s(-1) and 3.5 +/- 0.05 x 10(4) mol(-1) dm3 s(-1), respectively. Nitrite, at neutral pH, influenced measurements of activity of lactoperoxidase with typical substrates like 2,2'-azino-bis[ethyl-benzothiazoline-(6)-sulphonic acid] (ABTS), guaiacol or thiocyanate (SCN-). The rate of ABTS and guaiacol oxidation increased linearly with nitrite concentration up to 2.5-5 mmol dm(-3). On the other hand, two-electron SCN- oxidation was inhibited in the presence of nitrite. Thus, nitrite competed with the investigated substrates of lactoperoxidase. The intermediate, most probably nitrogen dioxide (*NO2), reacted more rapidly with ABTS or guaiacol than did lactoperoxidase compound II. It did not, however, effectively oxidize SCN- to OSCN-. NO2- did not influence the activity measurements of horseradish peroxidase by ABTS or guaiacol method.  相似文献   

15.
In this study it is shown that the higher molecular weight previously reported for tiger shark carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) compared to other carbonic anhydrases is decreased to a normal value around 30 000 after disulfide reduction of the enzyme. This difference in molecular weight is at least partly due to the existence of disulfide-linked glutathione and cysteine residues. Approx. 3 mol glutathione and a similar amount of cysteine are shown to be bound per mol enzyme. The presence of these factors also has effects on the enzyme activity.  相似文献   

16.
Except for its redox properties, cytochrome c is an inert protein. However, dissociation of the bond between methionine-80 and the heme iron converts the cytochrome into a peroxidase. Dissociation is accomplished by subjecting the cytochrome to various conditions, including proteolysis and hydrogen peroxide (H(2)O(2))-mediated oxidation. In affected cells of various neurological diseases, including Parkinson's disease, cytochrome c is released from the mitochondrial membrane and enters the cytosol. In the cytosol cytochrome c is exposed to cellular proteases and to H(2)O(2) produced by dysfunctional mitochondria and activated microglial cells. These could promote the formation of the peroxidase form of cytochrome c. In this study we investigated the catalytic and cytolytic properties of the peroxidase form of cytochrome c. These properties are qualitatively similar to those of other heme-containing peroxidases. Dopamine as well as sulfhydryl group-containing metabolites, including reduced glutathione and coenzyme A, are readily oxidized in the presence of H(2)O(2). This peroxidase also has cytolytic properties similar to myeloperoxidase, lactoperoxidase, and horseradish peroxidase. Cytolysis is inhibited by various reducing agents, including dopamine. Our data show that the peroxidase form of cytochrome c has catalytic and cytolytic properties that could account for at least some of the damage that leads to neuronal death in the parkinsonian brain.  相似文献   

17.
Some members of the glutathione peroxidase (GPx) family have been reported to accept thioredoxin as reducing substrate. However, the selenocysteine-containing ones oxidise thioredoxin (Trx), if at all, at extremely slow rates. In contrast, the Cys homolog of Drosophila melanogaster exhibits a clear preference for Trx, the net forward rate constant, k'(+2), for reduction by Trx being 1.5x10(6) M(-1) s(-1), but only 5.4 M(-1) s(-1) for glutathione. Like other CysGPxs with thioredoxin peroxidase activity, Drosophila melanogaster (Dm)GPx oxidized by H(2)O(2) contained an intra-molecular disulfide bridge between the active-site cysteine (C45; C(P)) and C91. Site-directed mutagenesis of C91 in DmGPx abrogated Trx peroxidase activity, but increased the rate constant for glutathione by two orders of magnitude. In contrast, a replacement of C74 by Ser or Ala only marginally affected activity and specificity of DmGPx. Furthermore, LC-MS/MS analysis of oxidized DmGPx exposed to a reduced Trx C35S mutant yielded a dead-end intermediate containing a disulfide between Trx C32 and DmGPx C91. Thus, the catalytic mechanism of DmGPx, unlike that of selenocysteine (Sec)GPxs, involves formation of an internal disulfide that is pivotal to the interaction with Trx. Hereby C91, like the analogous second cysteine in 2-cysteine peroxiredoxins, adopts the role of a "resolving" cysteine (C(R)). Molecular modeling and homology considerations based on 450 GPxs suggest peculiar features to determine Trx specificity: (i) a non-aligned second Cys within the fourth helix that acts as C(R); (ii) deletions of the subunit interfaces typical of tetrameric GPxs leading to flexibility of the C(R)-containing loop. Based of these characteristics, most of the non-mammalian CysGPxs, in functional terms, are thioredoxin peroxidases.  相似文献   

18.
The lactoperoxidase-thiocyanate-H2O2 system (LP system), consisting of lactoperoxidase (0.37 U/ml), KSCN (0.3 mM), and H2O2 (0.3 mM), delayed but did not prevent growth of L. monocytogenes Scott A at 5, 10, 20, and 30 degrees C in broth and at 20 degrees C in milk. The net lag periods determined spectrophotometrically varied inversely with temperature and were shorter at 5 and 10 degrees C for cultures from shaken versus from statically grown inocula. Lag periods for cultures from shaken and statically grown inocula, respectively, were 73 and 98 h at 5 degrees C, 22 and 32 h at 10 degrees C, both 8.9 h at 20 degrees C, and both 2.8 h at 30 degrees C. After the lag periods, the maximum specific growth rates were similar for each of the three treatments (complete LP system, H2O2 alone, or control broth) at 5, 10, and 20 degrees C and were 0.06 to 0.08, 0.09 to 0.1, and 0.32 to 0.36/h, respectively. At 20 degrees C in sterile reconstituted skim milk, the LP system restricted growth of Scott A, with log CFU counts per ml at 0, 36, and 68 h being 5.7, 6.4 and 7.9 (versus 5.7, 9.8, and 11.2 for controls). Possible explanations for the decreased lag times observed for cultures from aerobically grown inocula are discussed.  相似文献   

19.
Ascorbic acid inhibition of Campylobacter jejuni growth.   总被引:2,自引:0,他引:2       下载免费PDF全文
The inhibitory effect of ascorbic acid on Campylobacter jejuni is described. In vitro growth of clinical strains, as measured spectrophotometrically, was inhibited by 0.5 mg of freshly prepared L-ascorbic acid per ml. Alkaline-treated or aged L-ascorbic acid increased inhibition, as did copper; however, L-cysteine, L-cystine, and glutathione prevented inhibition. Biochemical analysis of the medium and cultures indicated that one or more of the oxidation products of L-ascorbic acid, e.g., L-dehydroascorbic acid or L-diketogulonic acid, were more effective inhibitors than was reduced L-ascorbic acid.  相似文献   

20.
Astrocytes provide cysteine to neurons by releasing glutathione   总被引:21,自引:0,他引:21  
Cysteine is the rate-limiting precursor of glutathione synthesis. Evidence suggests that astrocytes can provide cysteine and/or glutathione to neurons. However, it is still unclear how cysteine is released and what the mechanisms of cysteine maintenance by astrocytes entail. In this report, we analyzed cysteine, glutathione, and related compounds in astrocyte conditioned medium using HPLC methods. In addition to cysteine and glutathione, cysteine-glutathione disulfide was found in the conditioned medium. In cystine-free conditioned medium, however, only glutathione was detected. These results suggest that glutathione is released by astrocytes directly and that cysteine is generated from the extracellular thiol/disulfide exchange reaction of cystine and glutathione: glutathione + cystine<-->cysteine + cysteine-glutathione disulfide. Conditioned medium from neuron-enriched cultures was also assayed in the same way as astrocyte conditioned medium, and no cysteine or glutathione was detected. This shows that neurons cannot themselves provide thiols but instead rely on astrocytes. We analyzed cysteine and related compounds in rat CSF and in plasma of the carotid artery and internal jugular vein. Our results indicate that cystine is transported from blood to the CNS and that the thiol/disulfide exchange reaction occurs in the brain in vivo. Cysteine and glutathione are unstable and oxidized to their disulfide forms under aerobic conditions. Therefore, constant release of glutathione by astrocytes is essential to maintain stable levels of thiols in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号