首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the structural changes in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene of 14 UV-induced, 15 γ-ray-induced and 17 spontaneous mutants of human lymphoblastoid cells selected for 6-thioguanine (6TG) resistance. Southern blot analysis using the full-length HPRT cDNA as a probe revealed that 29% (5/17) of the spontaneous mutants contained detectable alterations in their restriction fragment patterns. Among the 15 mutants induced by γ rays, 7 (47%) had such alterations indicative of large deletions in the HPRT gene. In contrast, all 14 UV-induced mutants exhibited hybridization patterns indistinguishable from those of the wild-type cells. These results suggest that UV is likely to induce point mutations at the HPRT locus on the human chromosome and that the molecular mechanism of UV-induced mutation is quite different from that of ionizing radiation-induced mutation or spontaneous mutation in human cells.  相似文献   

2.
3.
Purified DNA from wild-type Chinese ovary (CHO) cells has been used to transform three hypoxanthine phosphoribosyltransferase (HPRT) deficient murine cell mutants to the enzyme positive state. Transformants appeared at an overall frequency of 5 x 10(-8) colonies/treated cell and expressed CHO HPRT activity as determined by electrophoresis. One gene recipient, B21, was a newly isolated mutant of LMTK- deficient in both HPRT and thymidine kinase (TK) activities. Transformation of B21 to HPRT+ occurred at 1/5 the frequency of transformation to TK+; the latter was, in turn, an order of magnitude lower than that found in the parental LMTK- cells, 3 x 10(-6). Thus both clonal and marker-specific factors play a role in determining transformability. The specific activity of HPRT in transformant extracts ranged from 0.5 to 5 times the CHO level. The rate of loss of the transformant HPRT+ phenotype, as measured by fluctuation analysis, was 10(-4)/cell/generation. While this value indicates stability compared to many gene transferents, it is much greater than the spontaneous mutation rate at the indigenous locus. The ability to transfer the gene for HPRT into cultured mammalian cells may prove useful for mutational and genetic mapping studies in this well-studied system.  相似文献   

4.
The mutation rate for the Na+/K+ ATPase locus (ouabain resistance, OuaR) in mammalian cells in culture has been reported to be 10-100-fold lower than the mutation rate of other gene loci in culture, such as the hypoxanthine phosphoribosyl transferase (HPRT) locus. Determination of the mutation rate to ouabain resistance is sensitive to culture conditions and the concentration of ouabain used to select mutants. Our improved growth conditions for human cells have permitted absolute cloning efficiencies of 70-90% and population doubling times of 16-17 h with both normal human diploid fibroblasts, KD, and their chemically induced neoplastic derivative, Hut-11A. Ouabain at 10(-7) M was found to be adequate to select for resistant (OuaR) mutants with an absolute recovery efficiency of 54-102%. Under these conditions, the mutation rates to ouabain resistance for human cells were measured and found to be 1-8.5 X 10(-7)/cell/generation for KD cells and 6-13 X 10(-7)/cell/generation for Hut-11A cells. These rates are 5-25 times higher than previously reported for human cells. Improved growth and the use of a lower concentration of ouabain for selection may allow for the increased recovery of OuaR mutants and an improved estimate of the mutation rate at this locus, which is only 2-10-fold less than the mutation rate at the HPRT locus in the same cells.  相似文献   

5.
Spontaneous phenotypic revertants of hypoxanthine phosphoribosyl-transferase (HPRT) temperature-sensitive V79 Chinese hamster cells were selected by plating a temperature-sensitive mutant in HAT medium at 39 degrees C. The incidence of such revertants was approximately 2 X 10(-4) per cell. The majority of the revertants examined had increases of between three- and tenfold in their specific activity of the enzyme, and they were able to grow continuously in the presence of HAT medium at 39 degrees C. When the revertants were cultivated in the absence of HAT, they recovered their HAT-sensitive phenotype and their lowered level of HPRT. Three of the revertants were examined for their temperature inactivation profiles, and all were found to have profiles identical to the ts parent, and quite different from the V79 wild type. The kinetic properties of the cell lines were studied: the Km for both PRPP and hypoxanthine was significantly different in the temperature-sensitive cells but was not significantly altered in the revertants with respect to the ts mutants. A specific antibody to Chinese hamster brain HPRT was employed in immunoprecipitation experiments. By measuring the point at which the immunoprecipitation of the antibody to HPRT was overcome by increasing concentrations of cell supernatant, it was possible to estimate the relative amount of enzyme molecules in the cell lines. From these data, it could be concluded that the revertants overproduced an enzyme with the same immunological properties as the ts line. Southern blots of the Hind III restricted DNA from the ts mutant and two revertant cell lines were examined with an HPRT cDNA probe. This established that the HPRT gene was amplified twofold in one of the revertants, and threefold in the other. However, if the revertants were reintroduced into nonselective medium, the gene copy number declined to one. Finally, northern blots of RNA extracted from the various cell lines demonstrated that the HPRT mRNA was augmented 1.5-fold in one revertant and 1.4-fold in the other. Reintroduction into non-selective medium resulted in a decline in mRNA level for the second mutant, whereas the first mutant appeared to be stabilized. We conclude that gene amplification and concomitant amplification of messenger RNA and enzyme levels are mechanisms of phenotypic reversion at the HPRT locus in Chinese hamster cells.  相似文献   

6.
The mutations C742T, G746T, G747T in the TP53 gene and G35T in the KRAS gene have been repeatedly found in sectors of human tumors by direct DNA sequencing. The mutation G508A in the HPRT1 gene has been repeatedly found among peripheral T lymphocytes by clonal expansion under selective conditions. To discover if these mutations also occur frequently in normal tissues from which tumors arise, we have developed and validated allele-specific mismatch amplification mutation assays (MAMA) for each mutation. Reconstruction experiments demonstrated linearity in the range of 9-3000 mutant alleles among 3 x 10(6) wild-type alleles. The cumulative distributions of all negative controls established robust detection limits (P<0.05) of 34-125 mutants per 10(6) copies assayed depending on the mutation. One hundred and seventy-seven micro-anatomical samples of approximately (0.5-6)x10(6) tracheal-bronchial epithelial cells from nine non-smokers were assayed representing en toto the equivalent of approximately 1.6 human bronchial trees to the fifth bifurcation. Statistically significant mutant copy numbers were found in 257 of 463 assays. Clusters of mutant copies ranged from 10 to 1000 in 239/257 positive samples. As all five point mutations were detected at mutant fractions of >10(-5) in two or more lungs, we infer that they are mutational hotspots generated in lung epithelial stem cells. As the cancer-associated mutations did not differ in cluster size distribution from the HPRT1 mutation, we infer that none of the mutations conferred a growth advantage to somatic heterozygous clusters or maintenance turnover units. Specific mutants appeared in very large copy numbers, 1000-35,000, in 18/257 positive assays. Various hypotheses to account for the observed cluster size distributions are offered.  相似文献   

7.
Structural alterations in the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in genomic DNA of adult rat-liver (ARL) epithelial cells that were mutated by alkylating and arylating mutagens were studied by restriction enzyme fragment pattern (RFP) analysis. ARL cells were mutated with the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or the activation-dependent arylating agents 7,12-dimethylbenz[a]anthracene (DMBA) and N-2-acetylaminofluorene (AAF). Alterations in the HPRT gene of at least 10 independent 6-thioguanine-resistant (TGr) clones mutated by each chemical were analyzed using 8 different restriction endonucleases; Hind III, EcoRI, BamHI, XbaI, Hae III, XhoI, MspI and PstI, and a full-length HPRT cDNA as a probe in molecular hybridization. Among the 10 MNNG-induced mutants, the RFPs obtained with most endonucleases displayed no changes, while an altered RFP was found in only one mutant using XbaI. None of the 10 DMBA-induced mutants displayed altered RFPs. Restriction analysis of the 10 AAF-induced mutants showed no abnormality in HPRT gene structure in most restriction digests, while altered RFPs were detected in one mutant using MspI and in two mutants with XbaI digestion. Overall, the studies reveal an absence of major DNA sequence changes in 26 of 30 induced mutants although the mutant phenotype of 4 of the TGr clones can be attributed to gross chromosomal changes or a point mutation at the restriction site. The absence of detectable alterations in the RFPs of the majority of the mutants is strongly suggestive of base substitution as the major molecular alteration underlying the mutant phenotype. The HPRT activity of 14 of 30 mutants was at least 5% of the wild-type level, which is consistent with a structural alteration in the gene product expressed as partial activity of the enzyme. Therefore, the data are interpreted as indicating that in the ARL cells, all 3 mutagens induced primarily localized alterations in base sequences in the HPRT gene together with a few mutations involving large sequence changes.  相似文献   

8.
Measurement of mutant frequency in tumour specimens has been hampered by low cloning efficiency in soft agar. A method was developed to detect cell proliferation using the thymidine analogue 5-bromo-2'-deoxyuridine (BrUdR). BrUdR incorporation was monitored by immunofluorescent staining of fixed cells using a monoclonal antibody highly specific for this nucleoside analogue. The 6-thioguanine (6TG) exposure conditions which inhibited DNA synthesis, as measured by BrUdR incorporation, in wild-type cells while allowing proliferation of spontaneous hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutants were investigated using tumour cell lines. It was shown that exposure to 10(-5) M BrUdR for the equivalent of 1 cell cycle time did not affect growth of wild-type cells, nor did it affect the growth of HPRT- mutants in the presence of 6TG. Methods for rapid flow cytometric enumeration of BrUdR-labelled 6TG-resistant cells were developed using fluorescent microspheres as an internal standard. To validate the BrUdR mutation assay, the 6TG mutant frequency (MF) was measured in L1210 R/S, a mouse leukaemic cell line (BrUdR 6TG MF = 7.0 X 10(-5] and the results directly compared with those from a microtitration cloning assay (MF = 4.6 X 10(-5]. The results were similar and within the range reported for HPRT MF in mammalian cells.  相似文献   

9.
Human lymphoblasts deficient in the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) were infected with an amphotropic helper-free retroviral vector expressing human HPRT cDNA. The stability and expression of the HPRT provirus in five cell lines with different proviral integration sites were examined by determining HPRT mutation and reversion frequencies and by blot hybridization studies. Mutation to the HPRT-negative phenotype occurred at frequencies of approximately 4 X 10(-5) to 3 X 10(-6) per generation. Most mutations in each of the five cell lines were associated with partial or complete deletions or rearrangements of the provirus. Several mutants retained a grossly intact HPRT provirus, and in one such mutant HPRT shutdown resulted from a revertible epigenetic mechanism that was not associated with global changes in proviral methylation. Therefore, mutation and shutdown of the HPRT provirus in human lymphoblasts result from mechanisms similar to those reported for several other avian and mammalian replication-competent retroviruses.  相似文献   

10.
Spontaneous and X-ray-induced mutants at the hypoxanthine phosphoribosyl transferase (HPRT) locus have been isolated from V79 Chinese hamster cells and characterized at the biochemical and cytogenetic levels. Fourteen spontaneous and 24 X-ray-induced clones were azaguanine and thioguanine resistant, did not grow in HAT medium (AZRTGRHATS) and failed to incorporate significant levels of [14C]hypoxyanthine. Cytogenetic analysis of two spontaneous and eight X-ray-induced mutants revealed no major X chromosome rearrangements. In two induced mutants, one of which was hypotetraploid (mode 35-39) with 2 X chromosomes, the short arm of the chromosome (Xp) was slightly shorter than normal. A third mutant was hyperdiploid (mode 22-23) compared with the parental clone (mode 21). When compared with wild-type clones, no other cytogenetic changes were evident in the remaining mutants. Analysis at the DNA level using a Chinese hamster HPRT cDNA probe showed major deletion of HPRT sequences in two and partial deletion in another two induced mutants. In two of the mutants with deletions of HPRT sequences there was a visible shortening of the Xp arm. In the other six mutants two spontaneous and four induced) no karyotypic changes or alterations in restriction fragment patterns were detected suggesting that they carry small deletions or point mutations at the HPRT locus.  相似文献   

11.
We evaluated the ability of proflavin to induce specific-locus mutations at the heterozygous thymidine kinase (tk) locus of L5178Y/TK +/- -3.7.2C mouse lymphoma cells, which appears to permit the recovery of mutants due to single-gene and chromosomal mutations. Proflavin was highly mutagenic at the tk locus, producing 724-965 TK mutants/10(6) survivors (background = 56-85/10(6); survival = 29-32%). Most of the mutants were small colonies, which suggested that proflavin may induce chromosomal mutations. The potent clastogenicity of proflavin was confirmed by cytogenetic analysis for chromosomal aberrations. At the highest dose analyzed (1.5 micrograms/ml), proflavin produced 82 aberrations/100 metaphaes (background = 2/100). The large-colony TK mutant frequency produced by proflavin (48-109/10(6) survivors; background = 23/10(6); survival = 57-61%) was similar to published HPRT mutant frequencies produces by proflavin in L5178Y and CHO cells (50-100/10(6) survivors; background = 2-50/10(6); survival = 50-62%). These results lead to the conclusion that proflavin is a potent clastogen and induces a high frequency of small-colony TK mutants; however, it induces a low frequency of HPRT mutants and a low frequency of large-colony TK mutants.  相似文献   

12.
This paper (1) presents an analysis of published data on the molecular nature of spontaneously arising and radiation-induced mutations in mammalian somatic cell systems and (2) examines whether the molecular nature and mechanisms of origin of radiation-induced mutations, in mammalian in vivo and in vitro systems, as currently understood, are consistent with expectations based on the biophysical and microdosimetric properties of ionizing radiation. Depending on the test system (CHO cells, human T lymphocytes and human lymphoid cell line TK6), 80-97% of spontaneous HPRT mutations show normal Southern patterns; the remainder is due to gross changes, predominantly partial (intragenic) deletions. Total gene deletions at the HPRT locus are rare except in the TK6 cell line. At the APRT locus in CHO cells, 80-97% of spontaneous mutations are due to base-pair changes, the remainder being, mostly, partial deletions. The latter can extend upstream in the 5' direction but not beyond the APRT gene in the 3' direction. At the human HLA-A locus (T lymphocytes), the percentage of mutations with normal Southern patterns is lower than that for HPRT, and in the range of 50-60%. At the HLA-A locus, mitotic recombination contributes substantially to the mutation spectrum (approximately 30% of mutations recovered) and this is likely to be true of the TK locus in the TK6 cell line as well. With a few exceptions, most of the radiation-induced mutations show altered Southern patterns and are consistent with their being deletions and/or other gross changes (HPRT, 70-90% (CHO); 50-85% (TK6); 50-75% (T lymphocytes); TK, 60-80% (TK6); HLA-A, 80% (T lymphocytes); DHFR, 100% (CHO]. The exceptions are APRT mutations in CHO cells (16-20% of mutants with deletions or other changes) and HPRT mutations in T lymphocytes from A-bomb survivors (15-25%); the latter finding is consistent with the occurrence of in vivo selection against HPRT mutant cells. In cases of HPRT intragenic deletions analyzed (CHO cells and V79 Chinese hamster cells), there is evidence for a non-random distribution of breakpoints. The spontaneous mutation frequencies vary widely, from about 0.04/10(6) cells (sickle cell mutations at the human HBB locus) to 30.8/10(6) cells (HLA-A mutations in T lymphocytes) and are dependent on the locus, the system employed and a number of other factors. Those for the other loci fall between these limits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Defective ecotropic and amphotropic retroviral vectors containing the cDNA for human hypoxanthine phosphoribosyltransferase (HPRT) were developed for efficient gene transfer and high-level cellular expression of HPRT. Helper cell clones which produced a high viral titer were generated by a simplified method which minimizes cell culture. We used the pZIP-NeoSV(X) vector containing a human hprt cDNA. Viral titers (1 X 10(3) to 5 X 10(4)/ml) of defective SVX HPRT B, a vector containing both the hprt and neo genes, were increased 3- to 10-fold by cocultivation of the ecotropic psi 2 and amphotropic PA-12 helper cells. Higher viral titers (8 X 10(5) to 7.5 X 10(6] were obtained when nonproducer NIH 3T3 cells or psi 2 cells carrying a single copy of SVX HPRT B were either transfected or infected by Moloney leukemia virus. The SVX HPRT B defective virus partially corrected the HPRT deficiency (4 to 56% of normal) of cultured rodent and human Lesch-Nyhan cells. However, instability of HPRT expression was detected in several infected clones. In these unstable variants, both retention and loss of the SVX HPRT B sequences were observed. In the former category, cells which became HPRT- (6-thioguanine resistant [6TGr]) also became G418s, indicative of a cis-acting down regulation of expression. Both hypoxanthine-aminopterin-thymidine resistance (HATr) and G418r could be regained by counterselection in hypoxanthine-aminopterin-thymidine. In vitro mouse bone marrow experiments indicated low-level expression of the neo gene in in vitro CFU assays. Individual CFU were isolated and pooled, and the human hprt gene was shown to be expressed. These studies demonstrated the applicability of vectors like SVX HPRT B for high-titer production of defective retroviruses required for hematopoietic gene transfer and expression.  相似文献   

14.
The mutational effects of ionising radiation at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were studied in human peripheral blood G(0) phase lymphocytes irradiated in vitro with gamma rays. The presence of radiation induced mutants was assessed by selecting the HPRT mutants every week on the basis of 6-thioguanine resistance up to 1 month after irradiation. A dose-related increase of 14.25x10(-6) mutants/Gy was measured after an expression time of 7 days. After 2 weeks from culture starting the fraction of clonable cells in irradiated and control cell populations decreased, limiting the measurements of mutant frequency. The mutational spectrum of the HPRT gene was determined by PCR analyses in a total of 99 mutant clones derived from irradiated lymphocytes. The independent origin of mutant clones carrying the same mutation was assessed by analysing the TCR gamma gene rearrangements. The results showed a dose-related increase of deletion mutants up to 3Gy, whereas point mutation frequency increased only up to 2Gy. Two preferentially deleted regions were identified; one involving the HPRT exon 3, and another one the 3'-terminal and the 3'-flanking region of the gene. One complex mutation involving a non-contiguous deletion of exons 2-5 and 7/8 was observed among the mutants isolated after 3Gy irradiation.  相似文献   

15.
16.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

17.
Summary Five mycoplasma species most frequently isolated from cell cultures were tested for the presence of endogenous hypoxanthine phosphoribosyl-transferase (HPRT), activity. All of the five, cultured in cell-free medium, contained variable but significant levels of HPRT. Two strains ofM. hyorhinis exhibited a 13-fold difference in their specific HPRT activity. When infected with any of these mycoplasma species, HPRT-deficient mouse cell mutants rapidly acquired a cell-associated HPRT activity; however, the cells remained sensitive to HAT medium and resistant to 6-thioguanine. On the other hand, normal HPRT-positive cells deliberately infected with the mycoplasmas uniformly became sensitive to HAT medium. The apparent transfer of mycoplasma-specific HPRT activity to HPRT-deficient cells may be used as a sensitive measure of cell infection by these mycoplasma strains. The HPRT activities of mycoplasmas share several common properties so that they can be distinguished easily from the mammalian HPRT isozymes. Compared to the animal cell enzymes, the mycoplasmal HPRT activities are less heat stable, more strongly inhibited by 6-thioguanine, and in general migrate more slowly in electrophoresis at a neutral pH. This work was supported in part by PHS Research Grants 5 R01 GM21014 and 1 P03 GM19100 (Genetics Center Grant to Albert Einstein College of Medicine), and PHS Research Contracts N01 GM 6-2119 and N01-AG-4-2865 (to the Institute for Medical Research), from the National Institute of General Medical Sciences and National Institute on Aging. S. S. is a recipient of a Faculty Research Award from the American Cancer Society.  相似文献   

18.
Summary Hypoxanthine incorporation was studied in growing HPRT mutant cells by preincubating them with extracts from normal cells, HPRT mutant cells, and extracts of their lyophilized cell sediment. HPRT mutant cells showed no increase of hypoxanthine uptake after preincubation with extracts of mutant cells, whereas after preincubation with extracts from normal cells and lyophilized sediment of HPRT mutant cells the incorporation rate was increased. This effect could not be observed when normal cells were preincubated with extracts of lyophilized sediments of normal cell lines.Dedicated to Prof. H. Holzer on the occasion of his 60th birthday  相似文献   

19.
Various markers of radiation-induced DNA damage including DNA oxidation were investigated in peripheral lymphocytes of 23 cancer patients prior to and one week after receiving radiotherapy with a cumulative dose of 54-70 Gy. Exposure to ionizing radiation nonsignificantly increased the ratio 2'deoxy-7-dihydro-8-oxoguanosine/2'deoxyguanosine (8-oxodG/dG) from 1.73 x 10(-5) to 3.33 x 10(-5). Frequencies of micronuclei significantly (p = 0.0003) increased from 6.4 to 38.9 per 1000 cells. The frequency of hypoxanthine-guanine-phosphoribosyltransferase (HPRT) mutant lymphocytes measured as 6-thioguanine resistant variant cells by 5-bromodeoxyuridine labeling, was elevated eight-fold, from 4.7 x 10(-6) to 36.2 x 10(-6) (p = 0.008) after termination of the radiotherapy, thus showing a clear response to the radiation treatment. No correlation between levels of oxidative DNA damage and frequencies of HPRT mutant lymphocytes or micronuclei could be established.  相似文献   

20.
A highly tumorigenic subdiploid cell line, BP6T, derived in our laboratory from Syrian hamster embryo (SHE) cells, is amenable to studies of somatic mutation in vitro. Cellular and biochemical characterization of clonally derived BP6T cells resistant to 6-thioguanine (TGr) or ouabain (Ouar) demonstrated these mutants to be similar qualitatively to mutants of SHE cells characterized previously (Barrett et al., 1978). BP6T TGr mutants resistant to 6-thioguanine are cross-resistant to 8-azaguanine, lack HPRT activity, exhibit a low frequency of reversion and arise spontaneously at a rate of 5 × 10−7 mutants per cell per generation. BP6T Ouar mutants were shown to be highly resistant to ouabain-mediated inhibition of 86Rb influx, indicating an alteration in the Na+/K+ ATPase. These studies on the BP6T cell line provide the experimental basis for a comparative study of the mutagenic responses of normal, diploid SHE cells versus those of related, but transformed aneuploid cells. Highly synchronized cultures of these 2 cells were mutagenized by pulse treatment with BrdU during different periods of S phase, followed immediately by near-UV irradiation. The induced mutation frequencies so obtained provided information about the temporal order of replication of genes encoding HPRT and Na+/K+ ATPase in both SHE and BP6T cells. The temporal pattern of replication of Na+/K+ ATPase gene loci is similar in both cell types, but the temporal order of replication of the HPRT gene is significantly different between SHE and BP6T cells (mid-late S phase, versus early S phase, resp.). This observed difference emphasizes the caution required in the study of mutagenesis and DNA replication using transformed, aneuploid cells under the assumption that the underlying mechanisms are the same for normal, diploid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号