首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Stoddart  Y Zhang    C J Paige 《Nucleic acids research》1996,24(20):4003-4008
We describe the isolation of a cDNA encoding a murine sialic acid-specific 9-O-acetylesterase as well as its expression pattern in cells of both hematopoietic and non-hematopoietic origin. This enzyme catalyzes the removal of O-acetyl ester groups from position 9 of the parent sialic acid N-acetylneuraminic acid. The cDNA is 2105 nt in length and encodes a protein of 541 amino acids with a predicted molecular weight of 61 kDa, not including oligosaccharides linked to eight potential N-glycosylation sites. The cDNA encoding the acetylesterase displays a widespread distribution in various cell lines and tissues. Expression studies of B lineage cell lines and primary fetal liver cells revealed a developmentally regulated expression pattern in cells of hematopoietic origin. Given the importance of 9-O-acetylation of sialic acids, the cloning of the cDNA encoding a sialic acid-specific 9-O-acetylesterase will be helpful in understanding further the regulation of this post-translational modification and the biological consequences thereof.  相似文献   

2.
A cytosolic sialic acid-specific O-acetyl-esterase was previously described that can remove O-acetyl esters from the 9-position of sialic acids. We show that rat liver Golgi vesicles contain a distinct sialic acid-esterase located within the lumen of the same vesicles that add O-acetyl esters to sialic acids. Studies of a retinoblastoma cell line genetically deficient in the cytosolic enzyme also confirm the existence of distinct membrane-associated sialic acid esterase activity. We developed a sensitive, specific and facile assay, which measures release of [3H]acetyl groups from [3H-acetyl]9-O-acetyl-N-acetylneuraminic acid. Using this assay, we show that rat liver membranes may contain different sialic acid O-acetyl-esterases. The membrane-associated enzyme(s) bind to Concanavalin A Sepharose, whereas the cytosolic enzyme does not. Membrane-bound and cytosolic esterases are inactivated by di-isopropyl-fluorophosphate, showing they are serine-active-site enzymes.  相似文献   

3.
A decrease in the level of O-acetylated sialic acids observed in colorectal carcinoma may lead to an increase in the expression of sialyl Lewis(X), a tumor-associated antigen, which is related to progression of colorectal cancer to metastasis. The underlying mechanism for this reduction is, however, not fully understood. Two enzymes are thought to be primarily responsible for the turnover of O-acetyl ester groups on sialic acids; sialate-O-acetyltransferase (OAT) and sialate-O-acetylesterase (OAE). We have previously reported the characterization of OAT activity from normal colon mucosa, which efficiently O-acetylates CMP-Neu5Ac exclusively in the Golgi apparatus prior to the action of sialyltransferase. In this report we describe the identification of a lysosomal and a cytosolic OAE activity in human colonic mucosa that specifically hydrolyses 9-O-acetyl groups on sialic acid. Utilizing matched resection margin and cancer tissue from colorectal carcinoma patients we provide strong evidence suggesting that the level of O-acetylated sialic acids present in normal and diseased human colon may be dependent on the relative activities of OAT to lysosomal OAE. Furthermore, we show that the level of free cytosolic Neu5,9Ac2 in human colon is regulated by the relative activity of the cytosolic OAE.  相似文献   

4.
The S protein of bovine coronavirus (BCV) has been isolated from the viral membrane and purified by gradient centrifugation. Purified S protein was identified as a viral hemagglutinin. Inactivation of the cellular receptors by sialate 9-O-acetylesterase and generation of receptors by sialylation of erythrocytes with N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) indicate that S protein recognizes 9-O-acetylated sialic acid as a receptor determinant as has been shown previously for intact virions. The second glycoprotein of BCV, HE, which has been thought previously to be responsible for the hemagglutinating activity of BCV, is a less efficient hemagglutinin; it agglutinates mouse and rat erythrocytes, but in contrast to S protein, it is unable to agglutinate chicken erythrocytes, which contain a lower level of Neu5,9Ac2 on their surface. S protein is proposed to be responsible for the primary attachment of virus to cell surface. S protein is proposed to be responsible for the primary attachement of virus to cell surface receptors. The potential of S protein as a probe for the detection of Neu5,9Ac2-containing glycoconjugates is demonstrated.  相似文献   

5.
Shi  WX; Chammas  R; Varki  A 《Glycobiology》1998,8(2):199-205
Sialic acids can be modified by O-acetyl esters at the 7- and/or 9- position, altering recognition by antibodies, lectins and viruses. 9(7)- O-acetylation is mediated by a sialic acid-specific O- acetyltransferase, which has proven difficult to purify. Two groups have recently isolated cDNAs possibly encoding this enzyme, by expression cloning of human melanoma libraries in COS cells expressing the substrate ganglioside GD3. Pursuing a similar approach, we have isolated additional clones that can induce 9-O-acetylation. One clone present in a melanoma library encodes a fusion protein between a bacterial tetracycline resistance gene repressor and a sequence reported to be part of the P3 plasmid. Expression of the open reading frame is necessary for inducing 9-O-acetylation, indicating that this is not a reaction to the introduction of bacterial DNA. Another clone from a rat liver cDNA library induced 9-O-acetylation on COS cells expressing alpha2-6-linked sialic acids, and encodes an open reading frame identical to the Vitamin D binding protein. However, truncation at the 5' end eliminates the amino-terminal hydrophobic signal sequence, predicting cytosolic hyperexpression of a truncated protein. Thus, diverse types of cDNAs can indirectly induce sialic acid 9-O- acetylation in the COS cell system, raising the possibility that the real enzyme may be composed of multiple subunits which would not be amenable to expression cloning. Importantly, the cDNAs we isolated are highly specific in their ability to induce 9-O-acetylation either on alpha2-6-linked sialic acids of glycoproteins (truncated vitamin D binding protein) or on the alpha2-8-linked sialic acids of gangliosides (Tetrfusion protein). These data confirm our prior suggestion that a family of O-acetyltransferases with distinctive substrate specificities exists in mammalian systems.   相似文献   

6.
Sialidase (EC 3.2.1.18) catalyzes the release of sialic acid from sialo-oligosaccharides, gangliosides, or sialo-glycoproteins. In this investigation, we cloned a novel cDNA for mouse brain sialidase and expressed the cDNA in COS-7 cells. This 1,699 bp cDNA codes for a 41.6 kDa protein consisting of 372 deduced amino acid residues. In COS-7 cells transiently transfected with the cDNA, a 250-fold increase was observed in specific activity toward 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Similarity searches of the nonredundant GenBank peptide sequence database by the PSI-BLAST program identified rat, hamster, human, and bacterial sialidases homologous to this mouse brain sialidase. Amino acid sequence identities to rat and hamster sialidases (84% and 77%, respectively) suggest that this form of sialidase is conserved in rodents. Sequence identities to human and mouse lysosomal sialidases (30% and 28%, respectively) indicate that the mouse brain sialidase is distinct from the lysosomal enzyme. Mouse brain sialidase has two amino acid sequence motifs common to bacterial sialidases: the 'F/YRIP' motif and the 'Asp-box' motif. The 'F/YRIP' motif is present near the N terminus while two 'Asp-box' motifs are present downstream.  相似文献   

7.
8.
Synthetic sialic acid analogues varying in the substitutents at position C-9 were analyzed for their ability to replace the natural receptor determinant for influenza C virus, N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2). By incubation of erythrocytes with sialyltransferase and the CMP-activated analogues, the cell surface was modified to contain sialic acid with one of the following C-9 substituents: an azido, an amino, an acetamido, or a hexanoylamido group. Among these, only 9-acetamido-N-acetylneuraminic acid (9-acetamido-Neu5Ac) was able to function as a receptor determinant for influenza C virus as indicated by the ability of the virus to agglutinate the modified red blood cells. In contrast to the natural receptors, 9-acetamido-Neu5Ac-containing receptors were found to be resistant against the action of sialate 9-O-acetylesterase, the viral receptor-destroying enzyme. No difference in the hemolytic activity of influenza C virus was detected when analyzed with erythrocytes containing either Neu5,9Ac2 or 9-acetamido-Neu5Ac on their surface. This finding indicates that cleavage of the receptor is not required for the viral fusion activity. The sialic acid analogues should be useful for analyzing not only the importance of the receptor-destroying enzyme of influenza C virus, but also other biological processes involving sialic acid.  相似文献   

9.
By comparative analysis of the hemagglutinin-esterase (HE) protein of mouse hepatitis virus strain S (MHV-S) and the HE protein of influenza C virus, we found major differences in substrate specificities. In striking contrast to the influenza C virus enzyme, the MHV-S esterase was unable to release acetate from bovine submandibulary gland mucin. Furthermore, MHV-S could not remove influenza C virus receptors from erythrocytes. Analysis with free sialic acid derivatives revealed that the MHV-S HE protein specifically de-O-acetylates 5-N-acetyl-4-O-acetyl sialic acid (Neu4, 5Ac2) but not 5-N-acetyl-9-O-acetyl sialic acid (Neu5,9Ac2), which is the major substrate for esterases of influenza C virus and bovine coronaviruses. In addition, the MHV-S esterase converted glycosidically bound Neu4,5Ac2 of guinea pig serum glycoproteins to Neu5Ac. By expression of the MHV esterase with recombinant vaccinia virus and incubation with guinea pig serum, we demonstrated that the viral HE possesses sialate-4-O-acetylesterase activity. In addition to observed enzymatic activity, MHV-S exhibited affinity to guinea pig and horse serum glycoproteins. Binding required sialate-4-O-acetyl groups and was abolished by chemical de-O-acetylation. Since Neu4,5Ac2 has not been identified in mice, the nature of potential substrates and/or secondary receptors for MHV-S in the natural host remains to be determined. The esterase of MHV-S is the first example of a viral enzyme with high specificity and affinity toward 4-O-acetylated sialic acids.  相似文献   

10.
This review summarizes the recent research development on mammalian sialidase molecular cloning. Sialic acid–containing compounds are involved in several physiological processes, and sialidases, as glycohydrolytic enzymes that remove sialic acid residues, play a pivotal role as well. Sialidases hydrolyze the nonreducing, terminal sialic acid linkage in various natural substrates, such as glycoproteins, glycolipids, gangliosides, and polysaccharides. Mammalian sialidases are present in several tissues/organs and cells with a typical subcellular distribution: they are the lysosomal, the cytosolic, and the plasma membrane–associated sialidases. Starting in 1993, 12 different mammalian sialidases have been cloned and sequenced. A comparison of their amino acid sequences revealed the presence of highly conserved regions. These conserved regions are shared with viral and microbial sialidases that have been characterized at three-dimensional structural level, allowing us to perform the molecular modeling of the mammalian proteins and suggesting a monophyletic origin of the sialidase enzymes. Overall, the availability of the cDNA species encoding mammalian sialidases is an important step leading toward a comprehensive picture of the relationships between the structure and biological function of these enzymes.  相似文献   

11.
We have shown that the individual members of the plant gene family for glutamine synthetase (GS) are differentially expressed in vivo, and each encode distinct GS polypeptides which are targeted to different subcellular compartments (chloroplast or cytosol). At the polypeptide level, chloroplast GS (GS2) and cytosolic GS (GS1 and GSn) are distinct and show an organ-specific distribution. We have characterized full length cDNA clones encoding chloroplast or cytosolic GS of pea. In vitro translation products encoded by three different GS cDNA clones, correspond to the mature GS2, GS1, and GSn polypeptides present in vivo. pGS185 encodes a precursor to the chloroplast GS2 polypeptide as shown by in vitro chloroplast uptake experiments. The pGS185 translation product is imported into the chloroplast stroma and processed to a polypeptide which corresponds in size and charge to that of mature chloroplast stromal GS2 (44 kDa). The 49 amino terminal amino acids encoded by pGS185 are designated as a chloroplast transit peptide by functionality in vitro, and amino acid homology to other transit peptides. The cytosolic forms of GS (GS1 and GSn) are encoded by highly homologous but distinct mRNAs. pGS299 encodes the cytosolic GS1 polypeptide (38 kDa), while pGS341 (Tingey, S. V., Walker, E. L., and Coruzzi, G. M. (1987) EMBO. J. 6, 1-9) encodes a cytosolic GSn polypeptide (37 kDa). The homologous nuclear genes for chloroplast and cytosolic GS show different patterns of expression in vivo. GS2 expression in leaves is modulated by light, at the level of steady state mRNA and protein, while the expression of cytosolic GS is unaffected by light. The light-induced expression of GS2 is due at least in part to a phytochrome mediated response. Nucleotide sequence analysis indicates that chloroplast and cytosolic GS have evolved from a common ancestor and suggest a molecular mechanism for chloroplast evolution.  相似文献   

12.
Structural and functional studies on N-CAM neural cell adhesion molecules   总被引:2,自引:0,他引:2  
The neural cell adhesion molecules N-CAM are to date the best characterized adhesion molecules of the nervous system. They have a high content of sialic acid residues which are present in the form of unusual sialic acid polymers. During development, a 3 fold decrease in the sialic acid content is observed. These changes in the degree of sialylation profoundly affect the binding properties of the molecules. A subpopulation of mouse brain N-CAM bears a carbohydrate determinant shared with other brain cell surface proteins and with the HNK-1 antigen of natural killer cells. Not only the carbohydrate side chains but also the protein moieties of the N-CAMs are heterogeneous. Three polypeptides of 180 K, 140 K and 120 K have been characterized in mouse brain. The 180 K and 140 K chains span the membrane. They differ mainly by the length of their cytoplasmic extensions. These intracellular domains are unusually long and contain phosphorylated serine residues. The 120 K chain exists in two forms, one membrane-bound and one soluble. Earlier studies had shown the presence of N-CAM on neurones and astrocytes of the mouse central nervous system, whereas cultured astrocytes had been reported to be N-CAM-negative. Recent results show that N-CAM is also expressed on astrocytes in culture. To study expression and heterogeneity of N-CAM polypeptides at the mRNA and gene level, cDNA clones for mouse N-CAM have been isolated. They reveal multiple mRNA species in mouse brain. By contrast, the corresponding sequences seem to be present only a few times, perhaps only once, in the mouse genome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Enhanced expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) and 9-O-acetylated disialoganglioside (9-OAcGD3) was observed on lymphoblasts of childhood acute lymphoblastic leukemia (ALL). Sialate-O-acetyltransferase (SOAT) and sialate-O-acetylesterase (SIAE) are the two main enzymes responsible for the quantity of the O-acetyl ester groups on sialic acids (Sias). We have earlier shown an enhanced level of SOAT activity, capable of transferring acetyl groups to Sias of glycoconjugates in the microsomes of lymphoblasts of these children. We further observed a decreased SIAE activity in both lysosomal and cytosolic fractions of ALL cell lines and primary cells from bone marrow of patients compared with peripheral blood mononuclear cells from healthy donors, which preferentially hydrolyze O-acetyl groups at C-9 of Sia. The level of O-acetylated Sias in the cytosolic and the lysosomal fractions showed a good correlation with SIAE activity in the corresponding fractions. The apparent K(M) values for SIAE in the lysosomal and the cytosolic fractions from lymphoblasts of ALL patients are 0.38 and 0.39?mM, respectively. These studies demonstrate that both SIAE and SOAT activities seem to be responsible for the enhanced level of Neu5,9Ac(2) in lymphoblasts, which is a hallmark in ALL. This was subsequently confirmed by using an enzyme-linked immunosorbent assay that also demonstrated a steady decline in SOAT activities even in cell lysates of lymphoblasts during successful chemotherapy, like radioactive methods have shown earlier.  相似文献   

14.
The major excreted protein of transformed mouse fibroblasts (MEP) has recently been identified as the lysosomal cysteine protease, cathepsin L. The synthesis and intracellular trafficking of this protein in mouse fibroblasts are regulated by growth factors and malignant transformation. To further define the basis for this regulation, a cDNA encoding MEP/cathepsin L was isolated from a mouse liver cDNA library and used to compare cathepsin L of normal and Kirsten sarcoma virus-transformed NIH 3T3 fibroblasts. Although cathepsin L message levels were elevated 20-fold in the transformed fibroblasts, normal and transformed cells displayed similar cathepsin L genomic DNA digest patterns and gene copy numbers, and cathepsin L mRNA sequences appeared identical by RNase protection analysis. These findings indicate that (i) cathepsin L is synthesized from the same gene in normal and transformed cells and (ii) cathepsin L polypeptides made by these cells are translated with the same primary sequence. Cathepsin L polypeptides synthesized by quiescent, growing, and transformed cells displayed similar isoelectric focusing patterns, suggesting similar post-translational modification. Site-directed mutagenesis of the mouse liver cDNA and expression in COS monkey cells was used to examine the glycosylation of mouse cathepsin L. The results indicated that only one of the two potential N-linked glycosylation sites (the one at Asn221) is glycosylated. Analysis by ion exchange chromatography on QAE-Sephadex, and affinity chromatography on mannose 6-phosphate receptor-Affi-Gel 10, indicated that the cathepsin L oligosaccharide was phosphorylated similarly in normal and transformed cells. Although several phosphorylated oligosaccharide species were observed, the major species contained two phosphomonoester moieties and bound efficiently to the receptor. These findings suggest that cathepsin L made by normal and transformed mouse fibroblasts are identical and substantiate the hypothesis that trafficking of cathepsin L in these cells is regulated by growth-induced changes in the lysosomal protein transport system.  相似文献   

15.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

16.
Although cytolysis of invading organisms is an innate form of immunity used by invertebrates, so far the underlying mechanism remains less explored. The pupal hemolymph of the mosquito Armigeres subalbatus induces an activity that causes hemolysis of human red blood cells (HRBC). This hemolytic activity was inhibited by sialic acid (N-acetylneuraminic acid) and serine protease inhibitors. We purified the sialic acid-specific lectin(s) from the pupal hemolymph using formaldehyde-fixed HRBC and determined the sequence of the amino-terminal 19 amino acid residues. A polyclonal antibody produced against this N-terminal peptide clearly inhibited the hemolytic activity of the hemolymph in vitro, thus suggesting that the hemolysis of HRBC is caused by the lectin present in the mosquito hemolymph. We suggest that mosquitoes possess a cytolysis system.  相似文献   

17.
The mushroom Paecilomyces japonica, grown on the silkworm larvae, has been used in Asia as a nutraceutical, tea, and Chinese medicine. In the present study, a sialic acid-specific lectin has been purified from the mushroom P. japonica using affinity chromatography on a fetuin-agarose column. Electrophoretical analyses indicated that this lectin, designated P. japonica agglutinin (PJA), is an acidic protein with a molecular mass of 16 kDa, and has no intermolecular disulfide bonds. PJA induced hemagglutination activity in human ABO, mouse, rat, and rabbit erythrocytes. This activity was inhibited by sialic acid and sialoglycoproteins, but not by any other carbohydrates. PJA was stable at pH 4.0-8.0, and at temperatures below 55 degrees C. The activity of PJA was independent of EDTA and divalent cations. In addition, PJA exerts cytotoxic effects on the following cancer cell lines: human stomach cancer SNU-1, human pancreas cancer AsPc-1, and human breast cancer MDA-MB-231.  相似文献   

18.
Escherichia coli K-12 and K-12 hybrid strains constructed to express a polysialic acid capsule, the K1 antigen, were able to efficiently use sialic acid as a sole carbon source. This ability was dependent on induction of at least two activities: a sialic acid-specific transport activity, and an aldolase activity specific for cleaving sialic acids. Induction over basal levels required sialic acid as the apparent inducer, and induction of both activities was repressed by glucose. Induction also required the intracellular accumulation of sialic acid, which could be either added exogenously to the medium or accumulated intracellularly through biosynthesis. Exogenous sialic acid appeared to be transported by an active mechanism that did not involve covalent modification of the sugar. Mutations affecting either the transport or degradation of sialic acid prevented its use as a carbon source and have been designated nanT and nanA, respectively. These mutations were located by transduction near min 69 on the E. coli K-12 genetic map, between argG and glnF. In addition to being unable to use sialic acid as a carbon source, aldolase-negative mutants were growth-inhibited by this sugar. Therefore, the intracellularly accumulated sialic acid was toxic in aldolase-deficient E. coli strains. The dual role of aldolase in dissimilating and detoxifying sialic acids is consistent with the apparent multiple controls on expression of this enzyme.  相似文献   

19.
E A Muchmore 《Glycobiology》1992,2(4):337-343
The changes in expression of sialic acids in Sprague-Dawley rats in the prenatal and early postnatal time period have been examined in multiple organs, both visceral and non-visceral. In all organs examined, there is a dramatic increase in both N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) shortly after birth. The bulk of the sialic acid is present in the ganglioside fraction in all tissues examined. As total amounts of sialic acid present in gangliosides decrease, the proportion present in the low molecular weight cytosolic fraction increases. A curious observation is that Neu5Ac hydroxylase activity is present at the time of the increase in sialic acid, but its activity does not correlate with Neu5Gc expression after the early postnatal period. This implies that Neu5Gc expression has another level of regulation besides CMP-Neu5Ac hydroxylase activity.  相似文献   

20.
A novel lectin (PCL) with specificity towards sialic acid was purified from Phaseolus coccineus L. (P. multiflorus willd) seeds using ion exchange chromatography on CM and DEAE-Sepharose, and gel filtration on Sephacryl S-200 column. PCL was a homodimer consisting of 29,831.265 Da subunits as determined by gel filtration and MS. Also, PCL was a non-metaloprotein and its N-terminal 23-amino acid sequence, ATETSFSFQRLNLANLVLNKESS, was determined. Subsequently, MTT method, cell morphological analysis and LDH activity-based cytotoxicity assays demonstrated that PCL was highly cytotoxic to L929 cells and induced apoptosis in a dose-dependent manner. Using caspase inhibitors, a typical caspase-dependent pathway was confirmed. PCL also showed remarkable antifungal activity towards some plant pathogenic fungi. Furthermore, when sialic acid-specific activity was fully inhibited, cytotoxicity and antifungal activity were abruptly decreased, respectively, suggesting a significant correlation between sialic acid-specific site and its bi-functional bioactivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号