首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Insulin-like growth factor-I (IGF-I) is required for the growth of oligodendrocytes, although the underlying mechanisms are not fully understood. Our aim was to investigate the role of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK1), and Src family tyrosine kinases in IGF-I-stimulated proliferation of oligodendrocyte progenitors. IGF-I treatment increased the proliferation of cultured oligodendrocyte progenitors as determined by measuring incorporation of [(3)H]-thymidine and bromodeoxy-uridine (BrdU). IGF-I stimulated a transient phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK1) and extracellular signal-regulated kinases (ERK1/2) (targets of MEK1), as well as a rapid and sustained activation of Akt (a target of PI3K). Furthermore, inhibitors of PI3K (LY294002 and Wortmannin), MEK1 (PD98059 and U0126), and Src family tyrosine kinases (PP2) decreased IGF-I-induced proliferation, and blocked ERK1/2 activation. LY294002, Wortmannin and PP2 also blocked Akt activation. To further determine whether Akt is required for IGF-I stimulated oligodendrocyte progenitor proliferation, cultures were infected with adenovirus vectors expressing dominant-negative mutants of Akt or treated with pharmacological inhibitors of Akt. All treatments reduced IGF-I-induced oligodendrocyte progenitor proliferation. Our data indicate that stimulation of oligodendrocyte progenitor proliferation by IGF-I requires Src-like tyrosine kinases as well as the PI3K/Akt and MEK1/ERK signaling pathways.  相似文献   

2.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

3.
4.
Overexpression of the ErbB2 receptor in one-third of human breast cancers contributes to the transformation of epithelial cells and predicts poor prognosis for breast cancer patients. We report that the overexpression of ErbB2 inhibits IGF-I-induced MAPK signaling. IGF-I-induced MAPK phosphorylation and MAPK kinase activity are reduced in ErbB2 overexpressing MCF-7/HER2-18 cells relative to control MCF-7/neo cells. In SKBR3/IGF-IR cells, reduction of ErbB2 by antisense methodology restores the IGF-I-induced MAPK activation. The inhibition of IGF-I-induced MAP kinase activation in ErbB2 overexpressing breast cancer cells is correlated with decreased IGF-I-induced Shc tyrosine-phosphorylation, leading to a decreased association of Grb2 with Shc and decreased Raf phosphorylation. However, IGF-I-induced tyrosine-phosphorylation of IGF-I receptor and IRS-I and AKT phosphorylation were unaffected by ErbB2 overexpression. Consistent with these results, we observed that the proportion of IGF-I-stimulated proliferation blocked by the MAPK inhibitor PD98059 fell from 82.6% in MCF-7/neo cells to 41.2% in MCF-7/HER2-18 cells. These data provide evidence for interplay between the IGF-IR and ErbB2 signaling pathways. They are consistent with the view that the IGF-IR mediated attenuation of trastuzumab-induced growth inhibition we recently described is dependent on IGF-I-induced PI3K signaling rather than IGF-I-induced MAPK signaling.  相似文献   

5.
The insulin-like growth factor-I (IGF-I) is a key regulator of skeletal muscle growth in vertebrates, promoting mitogenic and anabolic effects through the activation of the MAPK/ERK and the PI3K/Akt signaling pathways. Nutrition also affects skeletal muscle growth, activating intracellular pathways and inducing protein synthesis and accretion. Thus, both hormonal and nutritional signaling regulate muscle mass. In this context, plasma IGF-I levels and the activation of both pathways in response to food were evaluated in the fine flounder using fasting and refeeding trials. The present study describes for the first time in a nonmammalian species that the MAPK/ERK and PI3K/Akt are activated by exogenous circulating IGF-I, as well as showing that the MAPK/ERK pathway activation is modulated by the nutritional status. Also, these results show that there is a time-dependent regulation of IGF-I plasma levels and its signaling pathways in muscle. Together, these results suggest that the nutritionally managed IGF-I could be regulating the activation of the MAPK/ERK and the PI3K/Akt signaling pathways differentially according to the nutritional status, triggering different effects in growth parameters and therefore contributing to somatic growth in fish. This study contributes to the understanding of the nutrient regulation of IGF-I and its signaling pathways in skeletal muscle growth in nonmammalian species, therefore providing insight concerning the events controlling somatic growth in vertebrates.  相似文献   

6.
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.  相似文献   

7.
Insulin-like growth factor I (IGF-I) is a potent inducer of oligodendrocyte development and myelination. Although IGF-I intracellular signaling has been well described in several cell types, intracellular mechanisms for IGF-I-induced oligodendrocyte development have not been defined. By using specific inhibitors of intracellular signaling pathways, we report here that the MAPK and phosphatidylinositol 3-kinase signaling pathways are required for the full effect of IGF-I on oligodendrocyte development in primary mixed rat cerebrocortical cell cultures. The MAPK activation, but not the phosphatidylinositol 3-kinase activation, leads to phosphorylation of the cAMP response element-binding protein, which is necessary for IGF-I to induce oligodendrocyte development. cAMP, although it does not show any effect on oligodendrocyte development, has an inhibitory effect on IGF-I-induced oligodendrocyte development that is mediated by the cAMP-dependent protein kinase. Furthermore, cAMP also has an inhibitory effect on IGF-I-dependent MAPK activation. This is a cAMP-dependent protein kinase-independent effect and probably contributes to the cAMP action on IGF-I-induced oligodendrocyte development.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation.  相似文献   

9.
Expression of the insulin-like growth factor-binding protein 5 (IGFBP-5) gene in vascular smooth muscle cells is up-regulated by IGF-I through an IGF-I receptor-mediated mechanism. In this study, we studied the possible involvement of the mitogen-activated protein kinase (MAPK) and PI 3-kinase signaling pathways in mediating IGF-I-regulated IGFBP-5 gene expression. The addition of Des(1-3)IGF-I, an IGF analog with reduced affinity to IGFBPs, resulted in a transient activation of p44 and p42 MAPK. Inhibition of the MAPK activation by PD98059, however, did not affect IGF-I-stimulated IGFBP-5 expression. Des(1-3)IGF-I treatment also strongly activated PI 3-kinase. This activation was probably mediated through IRS-1, because IGF-I stimulation resulted in a significant increase in IRS-1- but not IRS-2-associated PI 3-kinase activity. This activation occurred within 5 min and was sustained at high levels for over 6 h. Likewise, Des(1-3)IGF-I caused a long lasting activation of PKB/Akt and p70(s6k). When LY294002 and wortmannin, two specific inhibitors of PI 3-kinase, were added with Des(1-3)IGF-I, the IGF-I-regulated IGFBP-5 expression was negated. The addition of rapamycin, which inhibits IGF-I-induced p70(s6k) activation, significantly inhibited IGF-I-regulated IGFBP-5 gene expression. These results suggest that the action of IGF-I on IGFBP-5 gene expression requires the activation of the PI 3-kinase-PKB/Akt-p70(s6k) pathway but not the MAPK pathway in vascular smooth muscle cells.  相似文献   

10.
Insulin receptor substrate-1 (IRS-1) is a key protein in the insulin-like growth factor (IGF) signaling whose tyrosine phosphorylation by the type 1 IGF receptor is necessary for the recruitment and activation of the downstream effectors. Through the analysis of cross-talks occurring between different tyrosine kinase receptor-dependent signaling pathways, we investigated how two growth factors [epidermal growth factor (EGF) and fibroblast growth factor (FGF)] could modulate the IGF-I-induced IRS-1 tyrosine phosphorylation and its downstream signaling. EGF and FGF inhibited IGF-I-stimulated tyrosine phosphorylation of IRS-1 and the subsequent IGF-I-induced phosphatidylinositol 3-kinase (PI 3-kinase) activity. These EGF- and FGF-inhibitory effects were dependent on both PI 3-kinase and protein kinase D1 (PKD1) signaling pathways but independent on the extracellular signal-regulated kinase (ERK) pathway. PKD1, which was activated independently of the PI 3-kinase pathway, associated with IRS-1 in response to EGF or FGF. Unlike PI 3-kinase, PKD1 did not mediate the EGF- or FGF-induced-IRS-1 serine 307 phosphorylation which was described to inhibit IRS-1. Interestingly, specific inhibition of either PI 3-kinase or PKD1 totally impaired EGF- or FGF-induced inhibition of IGF-I-stimulated IRS-1 tyrosine phosphorylation. This indicated that serine 307 phosphorylation of IRS-1 is not sufficient per se to inhibit the IGF signaling pathway and demonstrated for the first time that the negative regulation of IRS-1 requires the coordinated action of PI 3-kinase and PKD1. This further suggests that PKD1 may be an attractive target for innovative strategies that target the IGF signaling pathway.  相似文献   

11.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

12.
Insulin-like growth factor-I (IGF-I) may play an important role in the development of renal hypertrophy. In this study we determined the effect of IGF-I on cultured mesangial cells (MCs) and examined activation of key signaling pathways. IGF-I induced hypertrophy as determined by an increase in cell size and an increase in protein to DNA ratio and increased accumulation of extracellular matrix (ECM) proteins. IGF-I also activated both Erk1/Erk2 MAPK and phosphatidylinositol 3-kinase (PI3K) in MCs. Inhibition of either MAPK or PI3K, however, had no effect on IGF-I-induced hypertrophy or ECM production. Next, we examined the effect of IGF-I on activation of the calcium-dependent phosphatase calcineurin. IGF-I treatment stimulated calcineurin activity and increased the protein levels of calcineurin and the calcineurin binding protein, calmodulin. Cyclosporin A, an inhibitor of calcineurin, blocked both IGF-I-mediated hypertrophy and up-regulation of ECM. In addition, calcineurin resulted in sustained Akt activation, indicating possible cross-talk with other signaling pathways. Finally, IGF-I treatment resulted in the calcineurindependent nuclear localization of NFATc1. Therefore, IGF-I induces hypertrophy and increases ECM accumulation in MCs. IGF-I-mediated hypertrophy is associated with activation of Erk1/Erk2 MAPK and PI3K but does not require either of these pathways. Instead, IGF-I mediates hypertrophy via a calcineurin-dependent pathway.  相似文献   

13.
14.
Previously, we reported that somatostatins (SS) inhibit organismal growth by reducing hepatic growth hormone (GH) sensitivity and by inhibiting insulin-like growth factor I (IGF-I) production. In this study, we used hepatocytes isolated from rainbow trout to elucidate the mechanism(s) associated with the extrapituitary growth-inhibiting actions of SS. SS-14, a predominant SS isoform, stimulated tyrosine phosphorylation of several endogenous proteins, including extracellular signal-regulated kinase (ERK), a member the mitogen-activated protein kinase (MAPK) family, and protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K). SS-14 specifically stimulated the phosphorylation of both ERK 1/2 and Akt in a concentration-dependent fashion. This activation occurred within 5-15 min, then subsided after 1 h. The ERK inhibitor U0126 retarded SS-14-stimulated phosphorylation of ERK 1/2, whereas the PI3K inhibitor LY294002 blocked SS-14-stimulated phosphorylation of Akt. SS-14-inhibited expression of GH receptor (GHR) mRNA was blocked by U0126 but not by LY294002. By contrast, U1026 had no effect on SS-14 inhibition of GH-stimulated IGF-I mRNA expression, whereas LY294002 partially blocked the inhibition of GH-stimulated IGF-I mRNA expression by SS-14. These results indicate that SS-14-inhibited GHR expression is mediated by the ERK signaling pathway and that the PI3K/Akt pathway mediates, at least in part, SS-14 inhibition of GH-stimulated IGF-I expression.  相似文献   

15.
Insulin-like growth factor (IGF)-I and -II have been cloned from a number of teleost species, but their cellular actions in fish are poorly defined. In this study, we show that both IGF-I and -II stimulated zebrafish embryonic cell proliferation and DNA synthesis in a concentration-dependent manner, whereas insulin had little mitogenic activity. Affinity cross-linking and immunoblotting studies revealed the presence of IGF receptors with the characteristics of the mammalian type I IGF receptor. Competitive binding assay results indicated that the binding affinities of the zebrafish IGF-I receptors to IGF-I, IGF-II, and insulin are 1.9, 2.6, and >190 nM, indicating that IGF-I and -II bind to the IGF-I receptor(s) with approximately equal high affinity. To further investigate the cellular mechanism of IGF actions, we have studied the effects of IGFs on two major signal transduction pathways: mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3 kinase). IGFs activated MAPK in zebrafish embryonic cells in a dose-dependent manner. This activation occurred within 5 min of IGF-I stimulation and disappeared after 1 h. IGF-I also caused a concentration-dependent activation of protein kinase B, a downstream target of PI3 kinase, this activation being sustained for several hours. Inhibition of MAPK activation by the MAPK kinase inhibitor PD-98059 inhibited the IGF-I-stimulated DNA synthesis. Similarly, use of the PI3 kinase inhibitor LY-294002 also inhibited IGF-I-stimulated DNA synthesis. When both the MAPK and PI3 kinase pathways were inhibited using a combination of these compounds, the IGF-I-stimulated DNA synthesis was completely negated. These results indicate that both IGF-I and -II are potent mitogens for zebrafish embryonic cells and that activation of both the MAPK and PI3 kinase-signaling pathways is required for the mitogenic action of IGFs in zebrafish embryonic cells.  相似文献   

16.
Insulin-like growth factor I (IGF-I) has been previously shown to promote survival of oligodendrocyte progenitors; however, the underlying mechanisms are not fully understood. Our aim was to investigate the involvement of phosphatidylinositol 3-kinase (PI3K), MEK1, and Src family tyrosine kinases in IGF-I-mediated oligodendrocyte progenitor survival. In agreement with previous studies, IGF-I promoted cell survival. We show that IGF-I prevented apoptosis induced by growth factor deprivation in a PI3K-dependent and MEK/ERK-independent manner. In addition, IGF-I activated Akt while inhibiting caspase-3 activation, and these effects were reversed by the PI3K inhibitors LY 294002 and wortmannin, but not by the MEK1 inhibitor PD 98059. Interestingly, PP2, a specific Src-like kinase inhibitor, blocked the tyrosine phosphorylation of Src, Fyn, and Lyn and IGF-I-stimulated Akt activation, yet had no significant effects on caspase-3 activation or progenitor survival. To further determine whether Akt is required for IGF-I-mediated survival, oligodendrocyte progenitors were transduced with defective Akt mutants or treated with an Akt inhibitor. Although the Akt mutants and inhibitor decreased Akt activity and reduced basal cell survival, IGF-I could partially rescue oligodendrocyte progenitors by decreasing caspase-3 activation. These results suggest that 1) PI3K is essential for IGF-I-promoted cell survival, 2) downstream activation of Akt-dependent and -independent pathways is involved, and 3) Src-like tyrosine kinases participate in IGF-I-induced Akt activation. Therefore, an unidentified effector(s) of PI3K appears to be involved in conferring complete IGF-I-mediated protection of oligodendrocyte progenitors.  相似文献   

17.
Insulin-like growth factor I (IGF-I) stimulates smooth muscle cell (SMC) proliferation, and the mitogen-activated protein kinase (MAPK) pathway plays an important role in mediating IGF-I-induced mitogenic signaling. Our prior studies have shown that recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2) to the membrane scaffolding protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is required for IGF-I-dependent MAPK activation. The current studies were undertaken to define the upstream signaling components that are required for IGF-I-stimulated MAPK activation and the role of SHPS-1 in regulating this process. The results show that IGF-I-induced Shc phosphorylation and its subsequent binding to Grb2 is required for sustained phosphorylation of MAPK and increased cell proliferation in SMCs. Furthermore, for Shc to be phosphorylated in response to IGF-I requires that Shc must associate with SHPS-1 and this association is mediated in part by SHP-2. Preincubation of cells with a peptide that contains a phospho-tyrosine binding motif sequence derived from SHPS-1 inhibited IGF-I-stimulated SHP-2 transfer to SHPS-1, the association of Shc with SHPS-1, and IGF-I-dependent Shc phosphorylation. Expression of an SHPS-1 mutant that did not bind to Shc or SHP-2 resulted in decreased Shc and MAPK phosphorylation in response to IGF-I. In addition, SMCs expressing a mutant form of the beta3 subunit of the alphaVbeta3, which results in impairment of SHP-2 transfer to SHPS-1, also showed attenuated IGF-I-dependent Shc and MAPK phosphorylation. Further analysis showed that Shc and SHP-2 can be coimmunoprecipitated after IGF-I stimulation. A cell-permeable peptide that contained a polyproline sequence from Shc selectively inhibited Shc/SHP-2 association and impaired Shc but not SHP-2 binding to SHPS-1. Exposure to this peptide also inhibited IGF-I-stimulated Shc and MAPK phosphorylation. Cells expressing a mutant form of Shc with the four prolines substituted with alanines showed no Shc/SHPS-1 association in response to IGF-I. We conclude that SHPS-1 functions as an anchor protein that recruits both Shc and SHP-2 and that their recruitment is necessary for IGF-I-dependent Shc phosphorylation, which is required for an optimal mitogenic response in SMCs.  相似文献   

18.
Insulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell proliferation and migration by activating both MAPK and phosphatidylinositol 3-kinase (PI3K). Vascular smooth muscle cells (VSMCs) maintained in 25 mm glucose sustain MAPK activation via increased Shc phosphorylation and Grb2 association resulting in an enhanced mitogenic response compared with cells grown in 5 mm glucose. PI3K plays a major role in IGF-I-stimulated VSMC migration, and hyperglycemia augments this response. In contrast to MAPK activation the role of Shc in modulating PI3K in response to IGF-I has not been determined. In this study we show that impaired Shc association with Grb2 results in decreased Grb2-p85 association, SHPS-1-p85 recruitment, and PI3K activation in response to IGF-I. Exposure of VSMCs to cell-permeable peptides, which contained polyproline sequences from p85 proposed to mediate Grb2 association, resulted in inhibition of Grb2-p85 binding and AKT phosphorylation. Transfected cells that expressed p85 mutant that had specific prolines mutated to alanines resulted in less Grb2-p85 association, and a Grb2 mutant (W36A/W193A) that attenuated p85 binding showed decreased association of p85 with SHPS-1, PI3K activation, AKT phosphorylation, cell proliferation, and migration in response to IGF-I. Cellular exposure to 25 mm glucose, which is required for Shc phosphorylation in response to IGF-I, resulted in enhanced Grb2 binding to p85, activation of PI3K activity, and increased AKT phosphorylation as compared with cells exposed to 5 mm glucose. We conclude that in VSMCs exposed to hyperglycemia, IGF-I stimulation of Shc facilitates the transfer of Grb2 to p85 resulting in enhanced PI3K activation and AKT phosphorylation leading to enhanced cell proliferation and migration.  相似文献   

19.
Sonic Hedgehog (Shh) has been shown to promote adult myoblast proliferation and differentiation and affect Akt phosphorylation via its effector Smoothened (Smo). Here, the relationship between Shh and insulin-like growth factor I (IGF-I) was examined with regard to myogenic differentiation via signaling pathways which regulate this process. Each factor enhanced Akt and MAPK/ERK (p42/44) phosphorylation and myogenic factor expression levels in a dose-responsive manner, while combinations of Shh and IGF-I showed additive effects. Blockage of the IGF-I effects by neutralizing antibody partially reduced Shh's effects on signaling pathways, suggesting that IGF-I enhances, but is not essential for Shh effects. Addition of cyclopamine, a Smo inhibitor, reduced Shh- and IGF-I-induced Akt phosphorylation in a similar manner, implying that Shh affects gain of the IGF-I signaling pathway. This implication was also examined via a genetic approach. In cultures derived from Smo(mut) (MCre;Smo(flox/flox)) mice lacking Smo expression specifically in hindlimb muscles, IGF-I-induced Akt and p42/44 phosphorylation was significantly reduced compared to IGF-I's effect on Smo(cont) cells. Moreover, remarkable inhibition of the stimulatory effect of IGF-I on myogenic differentiation was observed in Smo(mut) cultures, implying that intact Smo is required for IGF-I effects in myoblasts. Immunoprecipitation assays revealed that tyrosine-phosphorylated proteins, including the regulatory unit of PI3K (p85), are recruited to Smo in response to Shh. Moreover, IGF-IR was found to associate with Smo in response to Shh and to IGF-I, suggesting that Shh and IGF-I are already integrated at the receptor level, a mechanism by which their signaling pathways interact in augmenting their effects on adult myoblasts.  相似文献   

20.
Hypoxic preconditioning (HP) 24 h before hypoxic-ischemic (HI) injury confers significant neuroprotection in neonatal rat brain. Recent studies have shown that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) intracellular signaling pathways play a role in the induction of tolerance to ischemic injury in heart and brain. To study the role of MAPK (ERK1/2, JNK, p38MAPK) and PI3K/Akt/GSK3beta signaling pathways in hypoxia-induced ischemic tolerance, we examined the brains of newborn rats at different time points after exposure to sublethal hypoxia (8% O(2) for 3 h). Immunoblot analysis showed that HP had no effect on the levels of phosphorylated Akt, GSK3beta, JNK and p38MAPK. In contrast, significantly increased levels of phosphorylated ERK1/2 were observed 0.5 h after HP. Double immunofluorescence staining showed that hypoxia-induced ERK1/2 phosphorylation was found mainly in microvessels throughout the brain and in astrocytes in white matter tracts. Inhibition of hypoxia-induced ERK1/2 pathway with intracerebral administration of U0126 significantly attenuated the neuroprotection afforded by HP against HI injury. These findings suggest that activation of ERK1/2 signaling may contribute to hypoxia-induced tolerance in neonatal rat brain in part by preserving vascular and white matter integrity after HI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号