首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肖显静  何进 《生态学报》2018,38(1):31-40
在生态学领域中,存在着生态系统整体论与还原论的争论。Tansley A.G.提出,生态系统是"准有机体"。Odum兄弟提出的"生态系统能量说"被广泛接受,但也受到质疑,称其为"还原论者的整体论"。基于对上述质疑的回应以及对生态系统整体论的追求,Patten B.C.等提出"生态网络理论",运用"网络‘环境子’分析"方法,试图从物理层面分析解决生物层面的"涌现性"问题。不过,这一理论也受到批判,认为其在探究符号化的现象对生态系统的动态影响时,陷入了还原论困境。Jrgensen S.E.等更进一步,提出"系统论"的生态系统生态学,试图从系统科学的角度研究生态系统的"物质-能量-信息-网络"系统。这一理论受到生态学界高度重视,但是也存在着在具体研究过程中如何平衡能量视角和生物地球化学视角的问题。由上述争论可见,生态系统生态学研究的趋势是从"物质实体"到"能量流动",再到"网络信息",最后到"开放系统"层层递进。目前面临的关键问题是:如何在更好地定义生态系统整体性的基础上,采取相应的能够体现生态系统整体性的方法,去获得更多、更好的生态系统整体性的认识。  相似文献   

2.
Industrial ecology rests historically—even in a short lifetime of 15 years or so—on the metaphorical power of natural ecosystems. Its evolution parallels the rise of concerns over unsustainability, that is, the threats to our world's ability to support human life the emergence of sustainability as a normative goal on a global scale. This article examines the relationships between industrial ecology and sustainability and argues that, in its historical relationship to classical ecology models, the field lacks power to address the full range of goals of sustainability, however defined. The classical ecosystem analogy omits aspects of human social and cultural life central to sustainability. But by moving beyond this model to more recent ecosystem models based on complexity theory, the field can expand its purview to address sustainability more broadly and powerfully. Complexity models of living systems can also ground alternative normative models for sustainability as an emergent property rather than the output of a mechanistic economic model for society's workings.  相似文献   

3.
城市用地日益紧张,城市建(构)筑物高度不断抬升,理应赋予城市空间载体更多的生态功能。景感生态学倡导在保持、改善和增加城市生态系统服务的同时提升居民满意度和可持续发展能力。城市立体绿化具有降温、降噪、滞尘、固碳等功能,是节能减排的有效举措。通过对深圳市立体绿化实地调查和景感生态学分析,剖析了立体绿化在促进居民的视觉、听觉、嗅觉、味觉及触觉等物理感知及心理认知功能方面的作用,以及增强城市生态系统服务的机理。研究表明,立体绿化是城市景感营造的有效手段,既能增强城市生态系统服务价值,也能提高城市空间利用率;在增加城市绿视率的同时,丰富了居民的物理感知及心理认知。最后,讨论了景感生态学理论与方法在立体绿化中的实际应用,以及景感营造技术在城市绿色建筑中的作用,以期让景感营造技术为提升立体绿化水平,进而为促进城市绿地系统规划提供支撑。  相似文献   

4.
Multiple marine ecological disturbances are ecosystem health indicators. An approach is described for systematically reconstructing spatial and temporal marine disturbance regimes related to human morbidity, wildlife mortality, disease events and harmful algal blooms. The approach is based upon recovery of meta-data from a survey of published literature and consolidation of geographic information layers from pre-existing sources. The examples provided are from the HEED (Health Ecological and Economic Dimensions) project conducted in the Northwestern Atlantic Ocean. Eight general disturbance indicator categories from HEED are suggested for assessing the health of the Baltic Sea ecosystem. These disturbance indicators represent 147 distinct impact types that may be used to examine relationships among impact causes, effects and costs from disturbances observed for near coastal and open waters. The HEED prototype is compatible with the objectives of the health module of the Baltic Sea's Large Marine Ecosystem initiative and consistent with implementation of the Baltic Sea Agenda 21 program. The general disturbance research methodology may be applied to the Baltic Sea or any other multijurisdiction marine region and these methods are not restricted to marine systems  相似文献   

5.
生态学既是生物学的分支学科,也是环境科学、地球系统科学的重要组成部分,其研究成果可直接服务于植物、动物、微生物的生物多样性保护、生物资源利用及生物产业管理等应用领域.生态系统概念将经典生态学或者基础生态学研究扩展到了生态系统生态学或者生态系统科学的新阶段,奠定了大尺度及全球生态环境科学研究的理论基础,促进了生物学、地理...  相似文献   

6.
葛永林  徐正春 《生态学报》2014,34(15):4151-4159
奥德姆的生态思想是妥协的整体论,有还原论的一面。把生态系统看作是功能性整体、承认生态系统各层次的涌现属性属于整体论,把生态关系简化为能量关系、把生态系统看作是物理系统的分析方法则是还原论的。这种矛盾的生态思想决定了其方法论的先天不足:生态模型的内在逻辑关系没有理顺;较少考虑生态系统的进化;生态研究方法的排它性等。但是,它并不妨碍奥德姆的生态思想在夯实生态学的本体论基础、促进理论生态学和生态工程学的形成、协调生态整体论与还原论分歧、奠定生态系统服务功能研究基础等方面发挥重要作用。要超越生态整体论与还原论,繁荣发展生态复杂性理论也许是最好的选择。  相似文献   

7.
The role of ecological theory in microbial ecology   总被引:3,自引:0,他引:3  
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.  相似文献   

8.
9.
刘畅  唐立娜 《生态学报》2020,40(22):8141-8146
城市生态系统服务和可持续发展是当前城市生态学研究的热点问题。景感生态学作为联系生态系统服务和可持续发展的桥梁,可作为研究城市生态系服务和可持续发展的一种有效途径。随着社会发展所伴随的人们经济生活的生活压力增大,城市居民的亚健康状态日益突出。城市公园作为城市生态系统的重要构成,其设计目的应考虑应对城市居民健康问题和促进人类精神文明建设方面的作用。以城市公园景观设计为例,从园路、建筑、植物、水体景观和小品等方面探讨景感生态学在城市公园景观设计中的应用价值。景感生态学作为探索城市公园景观设计的新思路,以实现生态效益和居民福祉的提升,丰富和提升城市公园的生态系统服务功能,从而有利于促进为人类当代和后代提供可持续的福祉,以期驱使人类行为和言行规律朝着对生态系统有益的方向演化,自觉维护和改善生态系统服务,从而可持续地保障城市生态系统服务。  相似文献   

10.
The ecosystem concept: A search for order   总被引:4,自引:0,他引:4  
The development of the ecosystem concept illustrates the search for order in science and shows how individuals and the social-cultural environment of the science influence concept evolution. Ecosystem was coined in 1935 and replaced a variety of inappropriate terms which all referred to a system of biotic and inorganic interactions in nature. It was popularized after the second World War and became a dominant paradigm in ecology world wide. As such, it dominated the development of productivity studies within the International Biological Program. The ecosystem concept became mature when it was realized that the ecosystem was an object that could be studied directly, using conventional scientific methods. Currently the ecosystem concept exists along side a variety of ecological concepts which represent the guiding research foci of ecological subfields.  相似文献   

11.
包庆德  张秀芬 《生态学报》2013,33(24):7623-7629
2013年是“现代生态学之父”美国生态学家奥德姆诞辰100周年。奥德姆的《生态学基础》一书对生态学从传统向现代转换具有积极的推进作用,主要表现在:提升了生态科学的量化水平,促成了生态系统生态学体系的诞生;倡导了生态学与经济学等社会科学的融合,丰富了生态经济学与生态系统服务功能研究;延展了生态学的应用尺度,为社会的生产变革和绿色运动提供了指导。奥德姆的生态学理论中诸如以能量分析为主导的生态系统分析方法还有待完善、生态系统方面较少考虑进化维度,衡量能量质量高低的能值方法的科学性有改善的空间等,但这都无碍他成为世界上最杰出的生态学家之一。  相似文献   

12.
13.
Has the science of ecology fulfilled the promises made by the originators of ecological science at the start of the last century? What should ecology achieve? Have good policies for environmental management flowed out of ecological science? These important questions are rarely discussed by ecologists working on detailed studies of individual systems. Until we decide what we wish to achieve as ecologists we cannot define progress toward those goals. Ecologists desire to achieve an understanding of how the natural world operates, how humans have modified the natural world, and how to alleviate problems arising from human actions. Ecologists have made impressive gains over the past century in achieving these goals, but this progress has been uneven. Some sub-disciplines of ecology are well developed empirically and theoretically, while others languish for reasons that are not always clear. Fundamental problems can be lost to view as ecologists fiddle with unimportant pseudo-problems. Bandwagons develop and disappear with limited success in addressing problems. The public demands progress from all the sciences, and as time moves along and problems get worse, more rapid progress is demanded. The result for ecology has too often been poor, short-term science and poor management decisions. But since the science is rarely repeated and the management results may be a generation or two down the line, it is difficult for the public or for scientists to decide how good or bad the scientific advice has been. In ecology over the past 100 years we have made solid achievements in behavioural ecology, population dynamics, and ecological methods, we have made some progress in understanding community and ecosystem dynamics, but we have made less useful progress in developing theoretical ecology, landscape ecology, and natural resource management. The key to increasing progress is to adopt a systems approach with explicit hypotheses, theoretical models, and field experiments on a scale defined by the problem. With continuous feedback between problems, possible solutions, relevant theory and experimental data we can achieve our scientific goals.  相似文献   

14.
The Ecosystem as a Multidimensional Concept: Meaning,Model, and Metaphor   总被引:6,自引:0,他引:6  
The ecosystem is a fundamental ecological concept that is not as simple as it first appears. We explore three key dimensions of the concept that make it both complex and broadly useful—its basic definition, its application via models to concrete or specific situations, and its metaphorical connotations as used in general communication within the domain of science and with the public at large. Clarity in identifying what the dimensions are and how they are related can help to maintain the rigor of the concept for specific scientific uses while also allowing enough flexibility for its use in the integration of scientific principles, as well as in public discourse. This analysis of the ecosystem as a multidimensional concept is likely to be generalizable to other important concepts in ecology. Received 28 February 2001; accepted 5 September 2001.  相似文献   

15.
红壤生态学   总被引:12,自引:0,他引:12  
黄国勤  赵其国 《生态学报》2014,34(18):5173-5181
红壤是一种重要类型的土壤,面积大、分布广,条件优越,开发利用潜力巨大。当前,红壤退化严重、生态环境问题突出,亟待研究治理。建立红壤生态学,将红壤生态学的理论与技术运用到红壤的生态治理、环境改善及其合理开发利用中,既是现实需要又是形势所迫,势在必行。红壤生态学是由土壤学与生态学交叉、复合而形成的一门新兴、边缘农业应用科学,是土壤生态学的一个分支学科。红壤生态学以红壤为研究对象,探索红壤生态系统中生物与生物、生物与环境、环境因子与环境因子之间的相互关系及其作用机理,深入揭示红壤生态系统的结构、功能、演变规律及调控措施,最终目标是要实现红壤资源的可持续利用和红壤生态系统的可持续发展。红壤生态学着重研究以下7个方面的内容:(1)红壤生态系统的结构;(2)红壤生态系统的功能;(3)红壤生态系统的演变;(4)红壤生态系统的退化;(5)红壤生态系统的平衡;(6)红壤生态系统的调控;(7)红壤资源的开发利用。红壤生态学具有以下几个明显的特征:交叉性与边缘性、复合性与综合性、实践性与应用性、理论性与学术性、多样性与复杂性、层次性与系统性,以及长期性与战略性。今后,红壤生态学将向着规范化、数字化、高效化、国际化方向发展。为促进红壤生态学的又好又快发展,应采取以下战略对策:一是培养专门人才;二是增加物质投入;三是建设研发平台;四是加强交流合作;五是勇于开拓创新。  相似文献   

16.
展望数学生态学与生态模型的未来   总被引:11,自引:0,他引:11  
李典谟  马祖飞 《生态学报》2000,20(6):1083-1089
首先简要回顾了20世纪数学生态学发展的历史,特别是半2个世纪以来在中国的发展。然后指出了生物学的进步为数学生态学的发展提供了机遇。作者列出了当前数学生态学和生态模型研究的几个热点:⑴非线性动力学;⑵种群的时空动态:包括异质种群动态,源-汇理论以及种群对时、空变化的响应等;⑶多样性和稳定性的关系;⑷行为的动态模型;⑸基于个体的模型。最后指出,生态学中混沌现象,可能表明多年来理论生态学家寻找的种群动态  相似文献   

17.
In an era of increasingly multidisciplinary science, it is essential to identify the frontiers as well as the core of an inherently holistic discipline: ecosystem ecology. To achieve this, we led a series of town hall events at multiple scientific-society meetings over a two-year period followed by a workshop with a diverse set of ecosystem scientists to review and expand on those outcomes. For the society town hall events ~70 individuals were asked to give short, provocative (the so-called, soapbox) presentations and audience members (~250) filled out tailored surveys. Both presentations and surveys were transcribed and themes were extracted and analyzed before and during the follow-up workshop. Formal ethnographic analysis of the soapbox texts produced three major themes: “frontiers,” “capacity building,” and “barriers to implementation,” including several subthemes. A workshop was held to analyze the ethnographic data where workshop participants further grouped key frontiers as (1) rethinking the drivers of ecosystem change, (2) new insights into ecosystem process and function, (3) evaluating human dimensions of ecosystem ecology, and (4) new angles on problem-solving/applied research. In addition, 13 experts were interviewed to crosscheck interpretations. The survey data, workshop deliberations, and expert interviews suggest that the core of these frontiers defines the current state and provides the foundational knowledge that bounds ecosystem ecology as a discipline. In response to emerging complex environmental issues and ongoing socioecological challenges, the edges of these frontiers expand fundamental ecosystem ecology to engage and intersect with disciplinary realms to create new ways of making sense of complexity, and to develop an even more holistic understanding of ecological systems. In this paper, we present our synthesis of the frontier and core research themes with the goal of inspiring the next wave of studies in ecosystem ecology.  相似文献   

18.
The demand for engineering solutions to ecosystem–level problems has increased as the impact of human activities has expanded to global proportions. While the science of restoration ecology has been developed to address many critical ecosystem management issues, the high degree of complexity and uncertainty associated with these issues demands a more quantitative approach. Ecological engineering uses science-based quantification of ecological processes to develop and apply engineering-based design criteria for sustainable systems. We suggest that in the United States ecological engineering curricula should be offered at the graduate level and should require rigorous Accreditation Board of Engineering and Technology-accredited (or equivalent) undergraduate preparation in engineering fundamentals. In addition to strengthening students’ mastery of engineering theory and application, the graduate curriculum should provide core courses in ecosystem theory including quantitative ecology, systems ecology, restoration ecology, ecological engineering, ecological modeling, and ecological engineering economics. Advanced courses in limnology, environmental plant physiology, ecological economics, and specific ecosystem design should be provided to address students’ specific professional objectives. Finally, professional engineering certification must be developed to insure the credibility of this new engineering specialization.  相似文献   

19.
"现代生态学讲座"系列会议是由国内外华人生态学家联合发起、为加强现代生态学的新理论、新观点、新方法和热点问题的交流与合作的国际会议.总结了2009年6月27~29日在兰州大学举行的第五届现代生态学讲座国际会议的全部二十五场报告,围绕"宏观生态学和可持续发展科学"的会议主题,分别从森林生态学、草地生态学、全球变化生态学、根际和土壤生态学、分子和行为生态学以及农业生态学等角度进行了分类总结.全部报告可归纳为"生态系统服务功能的物质基础"和"生态系统服务的生态学机制"两个大的基础理论问题,而解决问题的途径必须在人类-自然耦合生态系统的大框架下进行探索.对该会议的进一步改善提出了一些建议.  相似文献   

20.
1. Reynolds (1998) recently wrote a short piece in this journal lamenting the state of the art of freshwater ecology. Others have recently foreshadowed the end of science altogether. It is my argument here that the end of science is not nigh and that there are fundamental advances to be made in understanding ecosystem function. Despite changes to the funding base of freshwater ecology over the years, the discipline can continue to make fundamental contributions to ecology. We have an excellent base of raw material to work with, however, collected.
2. As a rebuttal R eynolds (1997) I present evidence that ecosystems (and freshwater ecosystems in particular) may well be a lot simpler than we think. Buried deep within a very complex world there are some general modes of behaviour, determined by fundamental principles, which impart certain kinds of high level order and predictability.
3. By means of six propositions I argue the case for the existence of these fundamental principles and present empirical evidence for each.
4. In conclusion it is clear that there is a need for fundamental information about the role of biodiversity in ecosystem function. There is also a need to understand the interplay between environmental perturbations, biodiversity and functional groups which together determine the cycling of energy and materials within freshwater and estuarine systems. While we have considerable information about northern hemisphere aquatic ecosystems less is known about southern hemisphere systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号