首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacteria associated with marine invertebrates are a rich source of bioactive metabolites. In the present study bacteria associated with the sponge Suberites domuncula and its primmorphs (3-dimensional aggregates containing proliferating cells) were isolated and cultured. These bacteria were extracted, and the extracts were assayed for antiangiogenic, hemolytic, antimicrobial, and cytotoxic activities. Our studies revealed that extract obtained from the bacterium (PB2) isolated from sponge primmorphs is a potent angiogenesis inhibitor. In the chick chorio-allantoic membrane (CAM) assay, it showed 50% activity at 5 μg ml−1 and 100% activity at 10 and 20 μg ml−1 concentrations. Extracts obtained from 5 bacterial strains isolated from sponge and its primmorphs showed hemolytic activity. The sponge-associated bacteria belonging to the α subdivision of Proteobacteria and the primmorph-associated bacterium identified as a possible novel Pseudomonas sp. displayed remarkable antimicrobial activity. It is important to note that these bacterial extracts were strongly active against multidrug-resistant clinical strains such as Staphylococcus aureus and Staphylococcus epidermidis, isolated from hospital patients. The bacterial extracts having antimicrobial activity also showed cytotoxicity against HeLa and PC12 cells. In summary, this investigation explores the importance of sponge-associated bacteria as a valuable resource for the discovery of novel bioactive molecules.  相似文献   

2.
Plants have natural products which use to possess antiproliferative potential against many cancers. In the present study, six isolated fractions (ethyl acetate, petroleum ether, chloroform, n-butanol, ethanol and aqueous) from Solanum nigrum were evaluated for their cytotoxic effect on different cell lines. Hepatic carcinoma cell line (HepG2), cervical cancer cell line (HeLa) and baby hamster kidney (BHK) used as normal non-cancerous cells were evaluated for cytotoxicity against isolated fractions. Cell viability assay was performed to evaluate the cytotoxicity of all fractions on different cell lines followed by the lactate dehydrogenase and vascular endothelial growth factor assays of most active fraction among all screened for cytotoxic analysis. HPLC analysis of most active fractions against cytotoxicity was performed to check the biological activity of compounds. Results displayed the potent cytotoxic activity of ethyl acetate fraction of S. nigrum against HepG2 cells with IC50 value of 7.89 μg/ml. Other fractions exhibited potent anticancer activity against HepG2 cells followed by HeLa cells. Fractions in our study showed no cytotoxicity in BHK cells. Cytotoxic activity observed in our current study exposed high antiproliferative potential and activity of ethyl acetate fraction against HepG2 cells. The results demonstrated that S. nigrum fractions exhibited anticancer activity against hepatic and cervical cancer cell lines with non-toxic effect in normal cells. These results reveal significant potential of S. nigrum for the therapeutic of cancers across the globe in future.  相似文献   

3.
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3‐hydroxy‐4‐methoxybenzamide ( 9 ) and 2,3‐dihydro‐2,2‐dimethyl‐4(1H)‐quinazolinone ( 15 ) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine ( 2 ) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.  相似文献   

4.
Bioactive secondary metabolites originating from dibromotyrosine are common in marine sponges, such as sponges of the Aplysina species. Verongiaquinol (1), 3,5-dibromo-1-hydroxy-4-oxocyclohexa-2,5-diene-1-acetamide, and aeroplysinin-1 are examples of such bioactive metabolites. Previous studies have shown the potent antimicrobial as well as cytotoxic properties of verongiaquinol and the anti-angiogenic activity of aeroplysinin-1. The work presented herein shows the design and synthesis of dibromotyrosine-inspired phenolic ester and ether analogues with anti-angiogenic, anti-proliferative and anti-migratory properties and negligible cytotoxicity. Several analogues were synthesized based on docking experiments in the ATP binding site of VEGFR2 and their anti-angiogenic potential and ability to inhibit angiogenesis and prostate cancer proliferation, migration and invasion were evaluated using the chick chorioallantoic membrane (CAM) assay, MTT, wound-healing, and Cultrex® BME cell invasion assay models, respectively. Analogues with high docking scores showed promising anti-angiogenic activity in the CAM assay. In general, ester analogues (5, 6, and 8–10) proved to be of higher anti-migratory activity whereas ether analogues (11–14) showed better anti-proliferative activity. These results demonstrate the potential of dibromotyrosines as promising inhibitory scaffolds for the control of metastatic prostate cancer proliferation and migration.  相似文献   

5.
Expression of a Rhodococcus-derived oxygenase gene in Escherichia coli yielded indigo metabolites with cytotoxic activity against cancer cells. Bioactivity-guided fractionation of these indigo metabolites led to the isolation of trisindoline as the agent responsible for the observed in vitro cytotoxic activity against cancer cells. While the cytotoxicity of etoposide, a common anticancer drug, was dramatically decreased in multidrug-resistant (MDR) cancer cells compared with treatment of parental cells, trisindoline was found to have similar cytotoxicity effects on both parental and MDR cell lines. In addition, the cytotoxic effects of trisindoline were resistant to P-glycoprotein overexpression, one of the most common mechanisms of drug resistance in cancer cells, supporting its use to kill MDR cancer cells.  相似文献   

6.

Background

Marine actinomycetes are efficient producers of new secondary metabolites that show different biological activities, including antibacterial, antifungal, anticancer, insecticidal, and enzyme inhibition activities.

Methods

The morphological, physiological, and biochemical properties of the strain Streptomyces sp. VITPSA were confirmed by conventional methods. Antibacterial, anti-oxidant, anti-inflammatory, anti-diabetic, and cytotoxic activities of Streptomyces sp. VITPSA extract were determined. The media were optimized for the production of secondary metabolites. Characterization and identification of secondary metabolites were conducted by high-performance liquid chromatography, gas chromatography-mass spectroscopy, and Fourier transform infrared spectroscopy analysis.

Results

The strain showed significant antibacterial, anti-oxidant, and cytotoxic activities, moderate anti-inflammatory activity, and no satisfactory anti-diabetic activity. The ethyl acetate extract of Streptomyces sp. VITPSA showed maximum antibacterial activity against two gram-positive and gram-negative bacteria at 0.5 mg/mL. The antioxidant potential of the crude extract exhibited strong reducing power activity at 0.5 mg/mL with 95.1% inhibition. The cytotoxic effect was found to be an IC50 of 50 μg/mL on MCF-7 cell lines. Experimental design of optimization by one-factor analysis revealed the most favorable sucrose, yeast extract, pH (7.25), and temperature (28°C) conditions for the effective production of secondary metabolites.

Conclusion

This study revealed that Streptomyces sp. VITPSA is an excellent source of secondary metabolites with various bioactivities.
  相似文献   

7.
A moderately halophilic fungus F1 was isolated from a marine solar saltern in Weihai, China. The identification of the fungus F1 was performed by the morphological characteristics, physiological and biochemical tests as well as phylogenetic analysis based on ITS (internal transcribed spacer)-5.8S rDNA region sequence comparison. The strain was identified as belonging to the genus Aspergillus and designated as Aspergillus sp. nov. F1. Furthermore, Aspergillus sp. nov. F1 grew well in 3?C15?% (w/v) NaCl, and with increasing of salinity, the generation of secondary metabolites with cytotoxicity was also augmented. Three compounds with cytotoxicity were isolated from the ethyl acetate extract of the whole broth and mycelia of Aspergillus sp. nov. F1, and identified as ergosterol, rosellichalasin and cytochalasin E, respectively. Especially, ergosterol showed high potent cytotoxic activity to human colon cancer cell line RKO with IC50 of 3.3?±?0.5???M. Considering the high cytochalasin production and the simple and economical fermentation of Aspergillus sp. nov. F1, the strain could be used as potential strain for large scale production of the cytochalasin E and rosellichalasin.  相似文献   

8.
9.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.  相似文献   

10.
Resistance and side effects are common problems for anticancer drugs used in chemotherapy. Thus, continued research to discover novel and specific anticancer drugs is obligatory. Marine sponges hold great promise as a source of potent cytotoxic peptides with future applications in cancer treatments. This study aimed to purify and identify cytotoxic peptides from the protein hydrolysates of the giant barrel sponge Xestospongia testudinaria, guided by a cytotoxicity assay based on the human cervical cancer cell line (HeLa). Comparison among trypsin, chymotrypsin, papain and alcalase hydrolysates of X. testudinaria revealed papain hydrolysate (PH) to be the most active. PH was purified consecutively by membrane ultrafiltration, gel filtration chromatography, and reversed-phase high performance liquid chromatography (RP-HPLC). Following liquid chromatography-tandem mass spectrometric analysis, two peptides were identified from the most cytotoxic RP-HPLC fraction: KENPVLSLVNGMF and LLATIPKVGVFSILV. Between the two, only the synthetic peptide KENPVLSLVNGMF showed cytotoxicity toward HeLa cells in a dose-dependent manner. KENPVLSLVNGMF (EC50 0.67 mM) was 3.8-fold more cytotoxic compared with anticancer drug 5-fluorouracil (EC50 2.56 mM). Furthermore, KENPVLSLVNGMF show only marginal 5% cytotoxicity to Hek293, a non-cancerous, human embryonic kidney cell line, when tested at 0.67 mM. The half-life of the peptide was 3.2?±?0.5 h in human serum in vitro, as revealed by RP-HPLC analyses. These results suggest that KENPVLSLVNGMF identified from X. testudinaria papain hydrolysate has potential applications as peptide lead in future development of potent and specific anticancer drugs.  相似文献   

11.
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.  相似文献   

12.
Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.  相似文献   

13.
The present study was designed to investigate the Puducherry coast of the Bay of Bengal, India for the diversity of bioactive actinomycetes. A total of 50 actinomycete strains were isolated from the marine sediments and most of the strains were belongs to Streptomyces. These strains were identified by means of morphological physiological, biochemical and cultural characteristics. The isolates were subjected to shake flask fermentation and the secondary metabolites were extracted with ethyl acetate and screened for cytotoxicity, hemolytic activity and antimicrobial activity against selected bacterial and fungal pathogens. The cytotoxic activity was evaluated using HeLa cell lines by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) assay, hemolytic activity on mouse erythrocytes and the antifungal activity was evaluated by MTT cytotoxic assay against Aspergillus niger, Aspergillus fumigatus and Candida albicans. The antibacterial activity was studied against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Klebsiella pneumoniae. The cytotoxicity and antimicrobial activity of secondary metabolite was found to be concentration dependent and nearly 24% of isolates showed significant antimicrobial, hemolytic and cytotoxic activity. The results of our study indicate the diversity and bioactive potential of marine actinomycetes isolated in the Puducherry coast.  相似文献   

14.
Cell-penetrating peptides and antimicrobial peptides share physicochemical characteristics and mechanisms of interaction with biological membranes, hence, termed as membrane active peptides. The present study aims at evaluating AMP activity of CPPs. LDP-NLS and LDP are Latarcin 1 derived cell-penetrating peptides and in the current study we have evaluated antifungal and cell-penetrating properties of these CPPs in Fusarium solani. We observed that LDP-NLS and LDP exhibited excellent antifungal activity against the fungus. Cellular uptake experiments with LDP-NLS and LDP showed that LDP-NLS acted as a CPP but LDP uptake into fungal spores and hyphae was negligible. CPP and AMP activity of mutated version of LDP-NLS was also evaluated and it was observed that both the activities of the peptide were compromised, signifying the importance of arginines and lysines present in LDP-NLS for initial interaction of membrane active peptides with biological membranes. Dextrans and Propidium Iodide uptake studies revealed that the mode of entry of LDP-NLS into fungal hyphae is through pore formation. Also, both LDP-NLS and LDP showed no cytotoxicity when infiltered into leaf tissues. Overall, our results suggest that LDP-NLS and LDP are selectively cytotoxic to F. solani and can be a potent peptide based antifungal agents.  相似文献   

15.
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1H NMR, 13C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100?mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC50 >100?μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation.  相似文献   

16.
Spleen cells from rats immunized with the syngeneic (C58NT)D Gross virus-induced lymphoma have been shown to differentiate into cytotoxic effector cells following secondary in vitro stimulation with tumor cells. In the studies presented here, we evaluated whether cells specifically responding to PPD would increase the development of specific cytotoxic reactivity by a second cell population primed to lymphoma antigen. Mixtures of (C58NT)D-primed and BCG-primed responding cells generated cytotoxic activity to syngeneic lymphoma cells following cocultivation with mitomycin C-treated stimulating (C58NT)D cells; the addition of PPD to these mixtures produced a significant increase in cytotoxicity. The increased antitumor response resulted from an increase in specific cytotoxic activity from primed precursor cells. Responding cells activated with PPD alone in the absence of lymphoma antigen showed no lytic activity. Optimal numbers of tuberculin sensitive cells and concentration of PPD were determined. Evaluation of the kinetics of the generation of the cytotoxic response indicated that the addition of BCG-primed ceils and PPD increased the magnitude of cytotoxicity but did not alter the time course of the generation of cytotoxic activity. The addition of tuberculin sensitive cells and PPD to the in vitro secondary immune response also led to augmentation of generation of cells with antitumor activity detectable in vivo.  相似文献   

17.
Various analogues of glaziovianin A, an antitumor isoflavone, were synthesized, and their biological activities were evaluated. O7-modified glaziovianin A showed strong cytotoxicity against HeLa S3 cells. Compared to glaziovianin A, the O7-benzyl and O7-propargyl analogues were more cytotoxic against HeLa S3 cells and more potent M-phase inhibitors. Furthermore, O7-modified molecular probes of glaziovianin A were synthesized for biological studies.  相似文献   

18.
Fungal secondary metabolites are a diverse group of natural chemical products with physiological relevance. We aimed to identify bioactive secondary metabolites from Aspergillus allahabadii. We used “activity-guided fractionation” strategy for the isolation of secondary metabolites. Crude extracts showed good antibacterial activity. Two antibacterial secondary metabolites have been isolated from the crude extract. Chemical characterization of these compounds was performed using biophysical techniques (FT-IR, NMR, and mass spectrometry). Structural characterization confirmed these to be pyrone derivatives: 3-hydroxy 2-methyl 4-pyrone and 5-hydroxy-2-(hydroxymethyl)-4H-pyrone. These bioactive pyrone derivatives have been identified as maltol and kojic acid. From our initial observations, we infer that these pyrone derivatives have potent antimicrobial, antioxidant, antidiabetic, and mosquito larvicidal activities and no cytotoxicity. These compounds could have potential therapeutic and biomedical applications, but further mechanistic studies using animal models are very much necessary.  相似文献   

19.
Sponges biosynthesize a wealth of secondary metabolites, many with novel structures and strong biological activity. Such compounds may serve multiple ecological roles including anti-predation, anti-fouling functionalities and are implicated in border defense or attack during spatial competition. Relative size of benthic organisms may also play an important role in competitive interactions. To determine if a relationship exists between individual size and bioactive metabolite production in the context of spatial competition, we examined three sponge species with different morphologies: the massive Coscinoderma matthewsi, the club-shaped branching Hyrtios erecta, and the fan-shaped Ianthella basta. Extracts from sponges of various sizes and competitive environments were examined using a cell based bioassay as a proxy of bioactivity. For I. basta, sponge size was correlated with bioactivity; the largest individuals generally being the most bioactive. In contrast, there was no correlation between size and bioactivity for either C. matthewsi or H. erecta. Bioactivity of sponges in this study were however highly variable among individuals, regardless of levels of competition. The prevalence of encroaching organisms was not correlated with sponge size for any of the three sponge species, suggesting that potential bioactivity is not influenced by surrounding competition.  相似文献   

20.
To explore the functional role of the antagonistic producer strain Streptomyces dendra sp. nov. MSI051 in the host sponge Dendrilla nigra, hypothetical factors including the antagonistic potential of MSI051 against biofilm bacteria and a ubiquitous defense enzyme phospholipase A2 (PLA2) in host sponge as well as in bacterial symbiont MSI051 were determined. The host sponge D. nigra and associated bacterial symbiont MSI051 contained high levels of PLA2. The host sponge showed PLA2 activity to the extent of 1032 U/L, with a specific activity of 2021 U/g, and strain MSI051 showed similar activity. The findings of the present study suggest that PLA2 in the sponge-associated bacteria might have an integrated functional role in the host defense system of marine sponges. This report may be the first on the role of PLA2 activity in sponge-associated bacteria. Isolate MSI051 was a potential antagonistic producer which showed a broad spectrum of antibacterial activity. Polyketide synthase gene type II in MSI051 ultimately evidenced the antagonistic potential. Antimicrobial activity was found to be positively skewed toward biofilm bacteria. This implies a functional role of MSI051 in the protection of host sponge against fouling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号