首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scrosati  Ricardo  Mudge  Benita 《Hydrobiologia》2004,519(1-3):215-218
Gametophytes predominated clearly over tetrasporophytes in an intertidal population of Chondrus crispus at Tor Bay (Nova Scotia, Canada) in the summer of 1991. Since this species is perennial and the rocky substrate is stable at this site, we predicted that gametophyte predominance would persist after several years. We confirmed this hypothesis by re-sampling the same area in the summer of 2003. This is one of the first long-term studies of the relative abundance of life-history phases done unequivocally at the same site for the Gigartinaceae.  相似文献   

2.
Complex haploid‐diploid life cycles amongst marine organisms may be maintained by ecological differences in life‐history phases. For red algal species within the Gigartinaceae, such differences may be driven, in part, by different cell wall composition and resultant biomechanical strengths of haploid and diploid phases. A field experiment tested the attachment strengths of gametophytes and tetrasporophytes of the isomorphic red alga, Chondrus verrucosus (with comparisons of fertile and vegetative fronds, with and without natural tissue damage across three wave‐exposed sites). Seventy‐nine percent of all fronds broke at the stipe‐holdfast junction. There were significant differences in attachment strength (break force and break stress), but not gross morphology (frond length, number of branch axes, wet weight and cross‐sectional area of fronds that dislodged at the stipe‐holdfast junction) of life‐history phases, with tetrasporophytes exhibiting weaker tissue strength and attachment, and therefore greater susceptibility to dislodgement by waves. However, fertility and tissue damage did not consistently influence dislodgement in pull‐to‐break tests simulating the effects of single waves. The ecological and evolutionary consequences of greater susceptibility to dislodgement of tetrasporophytes (relative to gametophytes) warrant further investigation.  相似文献   

3.
Qualitative and quantitative differences in carrageenan composition of gametophytes and tetrasporophytes of Chondrus crispus were observed in this study. Carrageenans in gametophytes belong to the kappa family (κ-, ι-, ν- and μ-carrageenan). The dominant fractions were κ- and ι-carrageenan (more than 50% of the total carrageenans). In tetrasporophytes, the presence of λ-carrageenan was confirmed. Carrageenan content in gametophytes (37.4?±?1.68% DW) was higher than in tetrasporophytes (29.13?±?0.76% DW). Spatial and temporal variation in carrageenan content in both life cycle phases appears to be related mainly to seawater and air temperatures, insolation, water movement and desiccation. The highest values of carrageenan content were recorded in those localities where higher values of precipitation, wind speed or water movement occurred. A bimodal temporal pattern on carrageenan content was observed. Fronds showed a high carrageenan content in spring and autumn. During these seasons, the content was over 40% in gametophytes and 30% in the tetrasporophytes. In summer and winter, these values down in both life cycle phases below 30%. In general the highest carrageenan contents were related to highest seawater temperatures. On the contrary, high air temperature and high insolation appeared to be unfavourable for carrageenan production. GLM models were obtained to predict carrageenan production from natural C. crispus populations, along Galician coast.  相似文献   

4.
Gametophytes are more abundant thou sporophytes in wave exposed rocky intertidal populations of Iridaea laminarioides Bory in Central Chile. In this study we experimental tested the differential effects of selected ecological factors on karyologically different life history phases. In the field, gametophytes dominated at higher elevation and during summer; tetrasporophytes were most abundant low in the intertidal and during the fall. Laboratory responses correlated with these patterns. Gametophytes exhibited greater desiccation tolerance than tetrasporophytes. Optimum growth of gametophytes occurred at higher temperatures (20°C) and longer photoperiods (16:8 h LD) than sporophytes (15°C and 12:12 h LD). Grazing preferences changed with the developmental stage of the alga, but all herbivores tested had increased preference for diploid tissues as compared to haploid. Number of spores produced with respect to total plant surface, or total rocky surface, or settlement of spores and their germination rate did not show significant differences between phases but showed great variability in space and time. Spontaneous spore release, however, was always higher in cystocarpic than in tetrasporangial thalli. Such a combination of results suggests that some real ecological differences exist between the two life history phases of I. laminarioides. Such ecological differences permit a prediction of vertical and temporal patterns of distribution for both phases. Horizontal patterns of distribution cannot be explained because the several selection factors probably interact differently in various habitats.  相似文献   

5.
The effects of solar UV radiation on mycosporine‐like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide.  相似文献   

6.
Sosa  P. A.  del Río Jiménez  M.  García-Reina  G. 《Hydrobiologia》1993,260(1):445-449
The physiological performances of tetrasporophytes and gametophytes of Gelidium canariensis (Grunow) Seoane-Camba were compared to estimate whether the field predominance of tetrasporophytes is due to lower fitness of gametophytes. No significant differences between tetrasporophytes and gametophytes were detected for calorific content, protein and pigment concentrations, NADH-Diaphorase, alkaline phosphatase and glucose-6-phosphate dehydrogenase activities and photosynthesis and respiration at 15, 20 and 25 °C, and pH 6.5, 8.2 and 9.2. Our results indicate that these physiological characteristics are not responsible for the scarcity of gametophytes in the field populations of G. canariensis.Abbreviations ALP = Alkaline phosphatase - G6PDH = glucose-6-phosphate dehydrogenase - DIA = NADH-Diaphorase - TRIS = Tris[hydroxymethyl]-aminomethane - PVPP = Polyvinylpolypyrrolidone  相似文献   

7.
Understanding of macroalgal dispersal has been hindered by the difficulty in identifying propagules. Different carrageenans typically occur in gametophytes and tetrasporophytes of the red algal family Gigartinaceae, and we may expect that carpospores and tetraspores also differ in composition of carrageenans. Using Fourier transform infrared (FT‐IR) microspectroscopy, we tested the model that differences in carrageenans and other cellular constituents between nuclear phases should allow us to discriminate carpospores and tetraspores of Chondrus verrucosus Mikami. Spectral data suggest that carposporophytes isolated from the pericarp and female gametophytes contained κ‐carrageenan, whereas tetrasporophytes contained λ‐carrageenan. However, both carpospores and tetraspores exhibited absorbances in wave bands characteristic of κ‐, ι‐, and λ‐carrageenans. Carpospores contained more proteins and may be more photosynthetically active than tetraspores, which contained more lipid reserves. We draw analogies to planktotrophic and lecithotrophic larvae. These differences in cellular chemistry allowed reliable discrimination of spores, but pretreatment of spectral data affected the accuracy of classification. The best classification of spores was achieved with extended multiplicative signal correction (EMSC) pretreatment using partial least squares discrimination analysis, with correct classification of 86% of carpospores and 83% of tetraspores. Classification may be further improved by using synchrotron FT‐IR microspectroscopy because of its inherently higher signal‐to‐noise ratio compared with microspectroscopy using conventional sources of IR. This study demonstrates that FT‐IR microspectroscopy and bioinformatics are useful tools to advance our understanding of algal dispersal ecology through discrimination of morphologically similar propagules both within and potentially between species.  相似文献   

8.
The nature of the relationship between Chondrus pinnulatus (Harvey) Okamura f. pinnulatus and C. pinnulatus f. armatus (Harvey) Yamada et Mikami (Gigartinaceae, Rhodophyta) was investigated by comparative analysis of their biogeography, phenologies, life histories, gross and vegetative morphology, crossability, and upper thermal tolerance. The forma pinnulatus has a more northerly distribution in Japan and adjacent waters, exhibiting adaptation to the cooler regions, whereas the forma armatus has a more southerly range. The latter may be the result of a higher thermal tolerance. Both formae have a Polysiphonia-type life history and are similar in their internal vegetative morphology. They can, however, be distinguished by gross morphology: forma pinnulatus has wide, flattened axes, compressed to flattened ultimate segments and proliferations, while forma armatus has narrow, compressed to subterete axes and subterete to terete ultimate segments and proliferations. These differences persist in laboratory culture. All intraformae crosses were positive, with carpospores from the cross developing into fertile F1 tetrasporophytes releasing tetraspores that developed into dioecious F1 gametophytes, the female gametophytes of which formed normal cystocarps. This suggests that members of populations of each forma freely interbreed. Among interformae crosses, only some offspring derived from geographically distant strains bore normal cystocarps in the F1 female gametophytes. Other crosses showed that interbreeding between populations of these two formae was blocked by various isolating mechanisms: incompatibility, hybrid inviability, and hybrid sterility. Reproductive isolation between f. pinnulatus and f. armatus is virtually complete in wild populations, because hybrid populations have not been found in the wild. In addition, these two entities can be considered biological species that are also referred to the taxonomic species, C. armatus and C. pinnulatus, because they do not overlap with regard to the morphology of the ultimate segments and proliferations. Subtle (but significant) gross morphological differences, partial interfertility between the two species, and deleterious hybridization in the area in which they occur sympatrically suggest that their evolutionary divergence was relatively recent.  相似文献   

9.
In order to better understand the alternation of generations that characterizes haploid–diploid life cycles, we assessed the existence of ecological differences between the two phases (haploid gametophyte and diploid tetrasporophyte) in Gracilaria chilensis, a rhodophyte with a typical Polysiphonia-type life cycle. We investigated the effect of light intensity and salinity on viability and growth of both phases at different ontogenetic stages: juveniles and adults. In our study, the survival of juvenile gametophytes (n) was higher than the survival of juvenile tetrasporophytes (2n) despite culture conditions; however, low salinity had greater effect on carpospores (2n) than on tetraspores (n). On the other hand, a complex interaction between salinity and light intensity within each life history phase generated observed differences between juvenile growth rates. Low light was shown to trigger early onset of alteration of the holdfast growing pattern. In addition, adult tetrasporophytes showed, despite the conditions, a faster vegetative growth than female and male gametophytes. These differences between phases could have led to the complete dominance of tetrasporophyte fragments of fronds observed in G. chilensis farms. We hypothesize that Chilean fishers could have unknowingly selected for tetrasporophyte thalli during domestication of the species, thus enhancing the natural trend of tetrasporophytes dominance already present in estuarine natural populations of free-floating plants.  相似文献   

10.
The biomass variation and the reproduction of the natural Gracilaria gracilis bed in Bahía Bustamante (Patagonia, Argentina) were analyzed for 2 years, with the aim of determining the present situation of the population for an updated status overview; establishing the relevant features of the temporal variation in both biomass and reproductive states in relation to environmental factors, epiphytes and associated algae; and assessing carpospore availability for future spore-culture development. Field measurements and sampling were performed monthly between March 2006 and February 2008. In both years, G. gracilis biomass presented marked seasonal variations, with a minimum in winter and a maximum in late spring and in summer. During both years, coexistence of the three life-cycle phases was found, with dominance of tetrasporophytes. Two data sets from individuals originated from sexual reproduction (tetraspores and carpospores) and from asexual reproduction by thallus fragmentation were analyzed separately. In the fragmentation fraction, tetrasporophyte frequencies remained higher than those for gametophytes. However, in the spore-originated fraction, a generation ratio close to 0.5 was observed. Female gametophytes bearing cystocarps were always present, with a maximum in summer and autumn. Biological data were related to environmental factors by means of canonical correspondence analysis (CCA). The first year was characterized by higher biomass values of G. gracilis and Undaria pinnatifida, lower epiphytism, larger Gracilaria thalli and greater proportion of mature tetrasporophytes and gametophytes. The second year was characterized by a high proportion of Gracilaria vegetative thalli and high epiphyte density. The best time to obtain spores from cystocarpic thalli would be in summer and early autumn.  相似文献   

11.
This paper presents results of field and laboratory work on one component of population structure ofIridaea splendens (Setchellet Gardner) Papenfuss (Gigartinaceae, Rhodophyta), the seasonal change in abundance of the gametophyte life-history stage. Investigations of this genus by others (using a variety of sampling and identification techniques) have shown a seasonal gametophyte dominance, sporophyte dominance, or some combination of these two. Gametophyte stages ofIridaea splendens produce kappa carrageenan and tetrasporophyte stages lambda carrageenan; a chemical colorimetric test using resorcinol can be used to identify these stages regardless of the presence of reproductive structures. In this paper we report on the proportion of gametophytes determined both by this chemical test and by the presence of reproductive structures, and on one possible determinant of the seasonal change in dominance. Analysis of field samples using the resorcinol test showed that from June–August the gametophyte stage predominates and from December–February the tetrasporaphyte stage is most common, both in reproductive and non-reproductive thalli (the latter tested as three size classes). Examination of reproductive structures gave similar results. One factor suggested in the literatures as a possible determinant of the haploid/diploid ratio is apomeiosis (in the formation of the tetraspores); our results show this to be unimportant in the Vancouver Harbor populations.Presented at the XIIIth International Seaweed Symposium, University of British Columbia, Vancouver, Canada, August 1989.  相似文献   

12.
In populations of the Gigartinaceae (Rhodophyta), gametophytes often predominate numerically over tetrasporophytes. Several hypotheses have been proposed to explain this dominance, based on the usually implicit assumption that the stable ratio between gametophytes and tetrasporophytes (G:T ratio) should be 1 if both reproductive phases are ecologically similar. We developed demographic models to test this assumption, for which we considered that both phases are ecologically similar. Defining ecologic similarity for most demographic rates is relatively straightforward, except for rates of spore output. The first set of models considered the same spore output per thallus of both phases as representing ecologic similarity. Model iterations led to stable G:T ratios of 1 for triennial and for perennial thalli, regardless of the initial G:T ratio, but not for annual thalli with initial G:T ratios different from 1. However, equal spore output may not represent ecologic similarity, due to size differences between carpospores and tetraspores. The second set of models considered the lowest possible spore output for each phase, according to the life history of this family: only one carposporangium, with one carpospore, is produced from every two gametophytes and only one tetrasporangium, with four tetraspores, is produced by every tetrasporophyte. Model iterations led to stable G:T ratios of 2.8 for most cases, a ratio of 1 being obtained only every 2 years for annual thalli with an initial G:T ratio of 1. Increasing absolute spore output, without altering the relative output between phases and incorporating density-independent mortality through a matrix model, given the same mortality rate for both phases, did not modify results. We suggest that the combination of both modeling and field research may uncover more rapidly than otherwise the most relevant ecologic differences between phases, if any, that underlie the G:T ratio observed for a given population.  相似文献   

13.
Observations on wild populations of Gracilaria bursapastoris (Gmelin) Silva and G. coronopifolia J. Ag. showed significant differences in gametophyte: tetrasporophyte ratios from the expected 1: 1 ratio. As in many other perennial red algae, the proportion of tetrasporic individuals in a population of these two Gracilaria spp. dominates the combined male and female gametophytc stage. There were significantly more male than female thalli in the G. cornopifolia population whereas the gametophytes of G. bursapastoris occurred in the expected 1: 1 ratio. In addition, there are seasonal changes in the proportions of tetrasporic and gametophytic individuals within the populations. Tetrasporic thalli of G. coronopifolia evinced a biphasic seasonal pattern with high proportions in winter and summer. The tetrasporic phase of G. bursapastoris, on the other hand, showed a low proportion in winter. Maximum biomass does not necessarily correlate with maximum proportion of the tetrasporophyte generation. Seasonal patterns in the proportion of male and female gametophytes differed for each stage as well as for each species. The proportion of male thalli in G. bursapastoris and G. coronopifolia showed high peaks in winter and autumn, respectively. Cystocarpic thalli were most abundant in the former in late winter and summer and in the latter in winter and spring. In both species the female gametophytes grew significantly slower than did the male gametophytic or tetrasporophytic stages. Practical applications regarding seasonal cycles in the various reproductive stages and their differential growth rates are discussed.  相似文献   

14.
We describe the abundance, including spatial and temporal variability, of phases of the isomorphic Chondrus verrucosus Mikami from Japan. Chondrus verrucosus occurred in a dense (~90% cover) and temporally stable bed on a small, isolated rocky outcrop (Oyakoiwa) in Shizuoka Prefecture. Small vegetative fronds were always much more abundant than large vegetative and fertile fronds over the spring to late summer periods in 1999 and 2000. Over the same period, fertile carposporophytic fronds were generally more abundant than fertile tetrasporophytic fronds, and fertile male fronds appeared infrequently at low densities. Using the resorcinol‐acetal test, we determined the proportion of gametophytes and tetrasporophytes in three populations of C. verrucosus: Oyakoiwa and Noroshi (Shizuoka) in the summers of 1999 and 2000 and Kamehana Point (Miyagi) in autumn 2000. All populations had a significantly higher proportion of gametophytes than tetrasporophytes in both years, although gametophytic proportions were lower at Noroshi (~70%) than at Oyakoiwa (~80%) and Kamehana Point (~97%). However, examination of all isolated individuals sampled on Noroshi showed equal proportions of each phase in 1999, but gametophyte dominance (74%) in 2000. Differences in dispersal and spore production between phases are discussed as mechanisms potentially contributing to variation in gametophyte dominance.  相似文献   

15.
In animals and land plants, many asexual species originate through inter‐ or intraspecific crosses, and such heterozygous asexuals frequently are more abundant than their sexual relatives in marginal habitats. Although asexual species have been reported in various macroalgal taxa, detailed information regarding their distribution, heterozygosity, and origin is limited. Because many asexual tetrasporophyte strains of Caloglossa vieillardii have been isolated from South Australia, far from their core tropical habitats, we re‐examined the distribution range of asexual C. vieillardii and genotyped these and other western Pacific strains using an actin gene marker. We confirmed the marginal distribution of the asexuals; however, a small patch of sexual thalli was newly discovered 450 km further west from asexual populations in South Australia. Three heterozygous genotypes and one homozygous genotypes were detected from nine asexual populations; 21 heterozygous strains were obligately asexual, but one homozygous strain suddenly produced sexual gametophytes after several years of culture. We hypothesized that the most abundant heterozygous genotype (defined as type 3/4) in asexual populations occurred by a cross between type 3 and type 4 allele gametophytes, both of which were isolated from the Australian coasts. In the crossing experiments, certain combinations between type 3 females and type 4 males produced tetrasporophytes, which recycled successive tetrasporophytes. In the culture experiments, whereas both sexual and asexual strains successfully produced tetraspores at 12°C, no sexual strains released carpospores below 14°C. However, it is uncertain whether this slight difference of maturation temperature was related to the marginal distribution of asexual C. vieillardii.  相似文献   

16.
As judged by comparison with other molecular data sets, random amplified polymorphic DNA (RAPD) data are robust in identifying large-scale biogeographic populations that range from hundreds to thousands of kilometers apart. As the geographical scale is shifted downward, however, RAPD data often fail. This is because RAPD data are inherently “noisy” as a result of technical artifacts and reproducibility problems associated with non-independence of bands, “missing” bands, and the presence of de novo bands, all of which contribute to scoring errors in the data set. To estimate the contribution of these error factors in algal phylogeographic studies, segregation of RAPD bands in tetrasphorophytic and gametophytic parents, their natural and synthetic offspring, and self-cycled tetrasporophytes were compared in Lophocladia trichoclados (Mertens in C. Agardh) Schmitz and to a limited extent in Digenea simplex (Wulfen) C. Agardh. Wide-ranging biogeographic populations of D. simplex were compared as were mixed populations of tetrasporophytes and gametophytes. Results show that nested priming can lead to some nonindependence of bands but that this probably does not significantly contribute to scoring error. Southern analysis using individual RAPD bands as probes revealed that up to 16% of visually nondetectable bands are actually present but that the random distribution of the error contributes uniformly across the data set. Non-parental (de novo in offspring) and parental (not present in offspring) bands may contribute substantially to the scoring error in tetrasporophytes, gametophytes, and self-cycled tetrasporophytes. The presence of tetrasporophytes and gametophytes in a sample is not important in large-scale phylogeographic studies but does affect within-clade variation at smaller scales. We conclude that the overall level of error remains roughly constant at probably between 5 and 10%, which is not a problem at large biogeographic scales where the phylogenetic signal is strong. Finally, some unexpectedly large abberations in RAPD banding patterns among life stages in L. trichoclados were observed that cannot be explained by methodological artifacts alone due to comparisons with synthetic offspring controls. The possibility that carpospore amplification may not always involve a simple mitotic process is discussed.  相似文献   

17.
Physiological differentiation of the heteromorphic life-history phases of the red alga Mastocarpus papillatus (C. Agardh) Kützing was assessed. Photosynthetic responses to light and temperature of the erect, foliose gametophyte were compared to those of the crustose tetrasporophyte. Plants of both phases were collected from four locations on the Pacific coast of Baja California, Mexico, and California, USA, between 32–4l° N latitude. Within each location, the chlorophyll-specific, light-saturated photosynthetic rates of gametophytes were generally five times greater than those of tetrasporophytes. Initial slopes of photosynthesis: irradiance curves were greater for gametophytes than for tetrasporophytes. The crust and the blade from each location were similar with respect to dark respiration rates. For tetrasporophytes from all locations, the photosynthetic temperature optima were between 12–15° C. The photosynthetic temperature optima for gametophytes ranged from 15–17° C for plants from Trinidad Head (41° N) to 22–25° C for plants from Punta Descanso (32° N). Both gametophytes and tetrasporophytes from the northernmost location had significantly higher photosynthetic rates than the same phase from the other three locations. The photosynthetic responses to light support models for the life history in which life history phases have different ecological roles. The gametophyte, thought to be specialized for rapid growth and competition, may allocate more resources to photosynthetic machinery, hence the higher maximum photosynthetic rates. The tetrasporophyte, thought to be specialized for resistance to herbivores, may allocate more resources to structural or chemical defenses in preference to photosynthetic machinery. Consequently, the tetrasporophyte has lower photosynthetic capacity.  相似文献   

18.
On the Brazilian coast, the red alga Gracilaria caudata J. Agardh is exploited for agar production. In view of its economic importance for potential mariculture, this work aimed to elucidate and characterize ecotypes along an extended Brazilian coastline by evaluating the effects of irradiance (70 and 150 μmol photons m?2 s?1) on the number of differentiated branches, growth rates (GRs), photosynthesis parameters, and pigment content of female gametophytes and tetrasporophytes from three distinct geographical areas: Ceará State (CE), Bahia State (BA), and São Paulo State (SP). Compared to low irradiance, high irradiance promoted higher GRs and a greater number of differentiated branches, as well as maximum electron transport rate (ETRmax) and maximum photosynthesis (P max) in both phases. However, irrespective of population or irradiance, tetrasporophytes had higher ETRmax (3.30 μmol e? m?2 s?1) than gametophytes (2.54 μmol e? m?2 s?1), corroborating the hypothesis that tetrasporophytes have better physiological performance than gametophytes, implicating correspondingly better adaptive abilities. Under high irradiance, regardless of the period of cultivation (14 or 28 days), strains from CE presented the highest GR (15% day?1) when compared to strains from SP (14% day?1) and BA (13% day?1). CE strains also had the highest number of differentiated branches and P max. Based on these results, we suggest that CE strains are the best candidates for future experimental mariculture tests. Importantly, overall differences in physiological performance among the strains from different populations give evidence of intraspecific diversity, thus supporting the hypothesis of ecotypic differentiation and allowing this study to define different G. caudata ecotypes.  相似文献   

19.
Theory predicts that the maintenance of haplodiplontic life cycles requires ecological differences between the haploid gametophytes and diploid sporophytes, yet evidence of such differences remain scarce. The haplodiplontic red seaweed Gracilaria vermiculophylla has invaded the temperate estuaries of the Northern Hemisphere, where it commonly modifies detrital and trophic pathways. In native populations, abundant hard substratum enables spore settlement, and gametophyte:tetrasporophyte ratios are ~40:60. In contrast, many non‐native populations persist in soft‐sediment habitats without abundant hard substratum, and can be 90%–100% tetrasporophytic. To test for ecologically relevant phenotypic differences, we measured thallus morphology, protein content, organic content, “debranching resistance” (i.e., tensile force required to remove a branch from its main axis node), and material properties between male gametophytes, female gametophytes, and tetrasporophytes from a single, nonnative site in Charleston Harbor, South Carolina, USA in 2015 and 2016. Thallus length and surface area to volume ratio differed between years, but were not significantly different between ploidies. Tetrasporophytes had lower protein content than gametophytes, suggesting the latter may be more attractive to consumers. More force was required to pull a branch from the main axis of tetrasporophytes relative to gametophytes. A difference in debranching resistance may help to maintain tetrasporophyte thallus durability relative to gametophytes, providing a potential advantage in free‐floating populations. These data may shed light on the invasion ecology of an important ecosystem engineer, and may advance our understanding of life cycle evolution and the maintenance of life cycle diversity.  相似文献   

20.
Ang  P.  De Wreede  R. E.  Shaughnessy  F.  Dyck  L. 《Hydrobiologia》1990,(1):191-196
Populations of Iridaea splendens at Brockton Point, Stanley Park, Vancouver, Canada were observed to alternate in dominance between the gametophytic phase in summer and tetrasporophytic phase in winter. The mechanism regulating this alternation is not clear. Using a matrix projection model to simulate population growth, we show that this alternation is possible if there are differential survival and recruitment rates of the two phases in summer and winter. Sensitivity and elasticity analyses indicate the relative importance of perennation vs. recruitment. Recruitment from tetrasporophytes and from gametophytes both contribute about 25% to the population growth. Perennation among gametophytes is more important than among tetrasporophytes. The implication of this is that if this population is to be harvested, more tetrasporophytes can be harvested than gametophytes without resulting in the depletion of the resource. This is simulated in the matrix model by comparing the relative effects on population growth of increasing the mortality rate of the perennation phase of tetrasporophyte and gametophyte by 50 to 75%, and increasing recruitment rate in either phase, from summer to winter or from winter to summer.Dedicated to Dr T. Bisalputra of the University of British Columbia on the occasion of his retirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号