首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of a desert stream   总被引:8,自引:0,他引:8  
SUMMARY. Rates of photosynthesis and community respiration were determined for benthic assemblages in Sycamore Creek, a Sonoran Desert stream in Arizona. Benthos in this stream can be separated into (1) mats of Cladophora glomerata and associated epiphytes and (2) assemblages of epipelic diatoms and blue-green algae. Community respiration and net photosynthesis were measured for these assemblages using submerged light-dark chambers in situ . Multiple regression analysis was used to predict (1) gross photosynthesis as a function of photosynthetically active radiation, temperature and chlorophyll-α concentration; and (2) community respiration as a function of temperature and biomass.
Calculations suggest that Sycamore Creek is autotrophic during the summer ( P/R = 1.7) and that the rates of gross photosynthesis ( P =8.5 g O2 m−2 day−1) and community respiration ( R = 5.1 g O2 m−2 day−1) are high for a small stream. Considerable difference exists between the Cladophora mat assemblages, in which mean P is 12.5gO2m−2 day−1and the P/R ratio is 2.3, and the epipelic assemblages in which mean P is 4.4 g O2m−2 day−1 and P/R is 0.96. The high rate of gross photosynthesis, low litter inputs, high biomass of algae and the intermittent but severe floods that characterize Sycamore Creek indicate that this stream and other similar desert streams are net exporters of organic matter and are, thereby, truly autotrophic stream ecosystems.  相似文献   

2.
The aim of this study was to investigate the effect of floods on the metabolic autotrophic rates of a Pampean stream. We hypothesized that there would be high productivity because of the macrophyte-rich community and the high nutrient levels but that this productivity would be reduced by flooding. Net community production (NCP) and community respiration (CR) were measured using clear and opaque acrylic chambers in the same reach of the stream. Community metabolism was analyzed in relation to biomass and the colonized streambed surface. Prior to the flood, epiphyton was the most productive compartment of the stream, whereas after the flood, the bottom algae compartment was the most productive one. Therefore, the relative contribution of each compartment to the entire ecosystem was influenced by the varying flow conditions. The primary gross production values of the Las Flores stream communities before the flood were higher than most of those reported in other streams worldwide and sustain the complex trophic web associated to the stream. Consequently, production decrease due to the lower relative contribution of macrophytes and epiphyton would lead to a more simplified trophic network.  相似文献   

3.
Uzarski  D.G.  Burton  T.M.  Stricker  C.A. 《Hydrobiologia》2001,455(1-3):137-155
We designed an open-ended community metabolism chamber to simultaneously measure surface and hyporheic metabolism. Our chamber design eliminated reaeration, compartmentalized metabolism, maintained ambient conditions and included hyporheic respiration. We compared results from our hyporheic chamber to results obtained from: (1) closed benthic community metabolism chambers constructed as recommended by Bott et al. (1978), and (2) whole-stream metabolism techniques as modified by Marzolf et al. (1994). Simultaneous comparisons of all three procedures were made for a 35 m riffle section of Augusta Creek, a 3rd-order Michigan stream, in July 1997 and repeated in July 1998. Simultaneous comparisons of all three procedures were also made for a 30 m sandy run section of Augusta Creek in September 1997, and repeated in September 1998. Our hyporheic chamber estimates for community respiration (CR24) were similar to those obtained using the whole-stream metabolism procedure but were considerably higher than estimates obtained using the closed benthic chambers in three of the four experiments. These data suggest that our chamber design provided estimates of community metabolism which included both benthic and hyporheic respiration. The chamber incorporates several positive aspects of both closed chambers and the whole-stream method. This new method can be replicated, eliminates the need for a reaeration coefficient, ambient conditions are better approximated since it remains an open system, and it appears to provide more realistic estimates of whole-stream metabolism compared to the traditional chamber approach.  相似文献   

4.
Carbon dioxide and oxygen exchange procedures for measuring community metabolism (two open stream methods and three chamber methods) were compared on the same reach of a third-order stream. Open stream methods were complicated by high diffusion rates and yielded net community primary productivity estimates lower than those obtained with chamber methods. Chamber methods yielded variable productivity and respiration data. However, when normalized for chlorophyll a, productivity estimates from the chamber methods were within an expected range for the system. Balances of photosynthesis and respiration from the chamber methods were similar between methods and indicated that autotrophic or heterotrophic processes could dominate the system. Considerations in applying the various procedures are discussed.  相似文献   

5.
Metabolism of a Sonoran Desert stream was investigated by both enclosure and whole system oxygen techniques. We used recirculating chambers to estimate surface sediment metabolism and measured deep sediment respiration in isolated sediment cores. Metabolism of the stream ecosystem was determined for a 30-m reach as dark and light oxygen change with and without black plastic sheeting that darkened the stream and prevented diffusion. Average ecosystem respiration for two dates in August (440 mg O2 m-2 h-1) exceeded respiration of either the surface sediment community (155 Mg O2 m-2 h-1) or the hyporheic community (170 mg O2 m-2 h-1) alone. Deep sediments show substantial oxygen and nitrate uptake when isolated. In the stream, this low nitrate interstitial water is exchanged with surface water. Metabolism of the isolated surface community suggests a highly productive and autotrophic system, yet gross production is balanced or exceeded by community respiration when ecosystem boundaries include the hyporheic zone. Thus, despite high rates of gross primary production (600–1200 mg O2 m-2 h-1), desert streams may be heterotrophic (PG < R) during summer.  相似文献   

6.
Epilithic community metabolism was determined on a seasonal basis over two years in nonregulated and regulated reaches of the Clearwater River in northern Idaho, U.S.A. Metabolism was estimated using three, 12-liter recirculating chambers and the dissolved oxygen method, with parameters expressed as g O2 m?2 d?1. In the nonregulated reach above the reservoir, gross community productivity (GCP) ranged from 0.8 to 3.2, community respiration (CR24) from 0.3 to 1.2, and production/respiration (P/R) ratios from 1.2 to 3.3. Epilithic metabolism in the regulated reach immediately below the dam increased sharply; GCP ranged from 4.2 to 25.5, CR24 from 1.9 to 9.7, and P/R ratios from 1.4 to 5.7. Increased primary production and respiration in the regulated reach was a result of extensive growth of an aquatic moss (Fontanalis neo-mexicanus). The influence of the dam on epilithic community metabolism was mitigated 2.5 km downstream of the dam due to the regulated North Fork of the Clearwater River (NFCR) merging with the larger, nonregulated Clearwater River. While the regulated Clearwater River below the confluence was somewhat affected by the regulated NFCR flows upstream, metabolism was similar to that found above the reservoir (GCP = 1.2 – 2.6, CR24 = 0.6 – 1.3, and P/R = 1.4 – 2.2). This study demonstrates that while Dworshak Dam has altered both primary production and respiration directly below the dam, the placement of the dam only 2.5 km upstream from a nonregulated reach greatly mitigates its effects on stream metabolism downstream. %  相似文献   

7.
Climate change is rapidly reshaping Arctic landscapes through shifts in vegetation cover and productivity, soil resource mobilization, and hydrological regimes. The implications of these changes for stream ecosystems and food webs is unclear and will depend largely on microbial biofilm responses to concurrent shifts in temperature, light, and resource supply from land. To study those responses, we used nutrient diffusing substrates to manipulate resource supply to biofilm communities along regional gradients in stream temperature, riparian shading, and dissolved organic carbon (DOC) loading in Arctic Sweden. We found strong nitrogen (N) limitation across this gradient for gross primary production, community respiration and chlorophyll‐a accumulation. For unamended biofilms, activity and biomass accrual were not closely related to any single physical or chemical driver across this region. However, the magnitude of biofilm response to N addition was: in tundra streams, biofilm response was constrained by thermal regimes, whereas variation in light availability regulated this response in birch and coniferous forest streams. Furthermore, heterotrophic responses to experimental N addition increased across the region with greater stream water concentrations of DOC relative to inorganic N. Thus, future shifts in resource supply to these ecosystems are likely to interact with other concurrent environmental changes to regulate stream productivity. Indeed, our results suggest that in the absence of increased nutrient inputs, Arctic streams will be less sensitive to future changes in other habitat variables such as temperature and DOC loading.  相似文献   

8.
1. In unshaded, nutrient-rich streams, prolific growth of stream macrophytes often results in flows that over-top the banks and in high primary production and respiration that may result in extreme diel variations in dissolved oxygen. Consequently, water protection authorities commonly remove macrophytes periodically.
2. We investigated the effect of plant removal on stream metabolism and oxygen balance in two Swiss streams with a high macrophyte biomass. We monitored the concentration of dissolved oxygen before and after macrophytes were removed by cutting and dredging, and calculated rates of gross primary production and ecosystem respiration by means of diel oxygen curves.
3. The removal of plants, which had reached a dry biomass of 320–420 g m−2 immediately before plant removal, had a different impact on stream metabolism in the two streams. In the first (plants removed in May), neither primary production nor ecosystem respiration were significantly affected. In the second (plants removed in late July), gross primary production and ecosystem respiration were reduced by about 70%. In this latter stream gross primary production increased in the first 2 weeks after plant removal but never recovered to pre-disturbance levels.
4. The removal of plants coincided with only a moderate increase in nocturnal oxygen concentration (+1 mg L−1). This, and the rapid partial recovery of stream metabolism in the second stream, suggests that an increase in the oxygen concentration after plant cutting is transient in unshaded, nutrient-rich streams.  相似文献   

9.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

10.
Spatial heterogeneity of substrata in streams may influence dissolved oxygen (O2) transport and nutrient forms. We studied the relationship between scales of substratum heterogeneity and O2. Heterogeneous systems could have greater respiration rates as a result of increased interfacial surfaces in the biogeochemically active areas between oxic and anoxic zones. We used grids with twelve 7 × 3.5 cm cells; half the cells were filled with sand and the other half with gravel to quantify the effect of centimeter-scale heterogeneity on respiration. The sand and gravel cells were arranged within the grids to give low, medium, and high heterogeneity. Grids were incubated for 15–17 days in a prairie stream, and then whole grid respiration was analyzed in closed recirculating chambers. Depth to anoxia and substratum metabolism were calculated from O2 microelectrode profiles measured in each cell of the grid and compared with data from natural stream transects from agricultural, urban, and prairie land use types. Shannon–Weaver (H′) diversity and “probability of change” indices were also used to compare heterogeneity of the grids to the natural stream transects. No significant differences were found among grid heterogeneity levels for respiration rate, but the anoxic interface was deeper in the gravel of higher heterogeneity grids, probably due to greater transport rates of O2 in the coarse-grained substratum. The H′ and probability of change indices indicated that the grids had levels of heterogeneity within the range of real streams. Grid depth to anoxia and substratum metabolism rates were similar to those found in streams, though less variable. In streams, H′ and probability of change values showed a slight difference among land use types, with some urban and agricultural sites displaying very low heterogeneity. Handling editor: Robert Bailey  相似文献   

11.
由于荒漠生态系统植被覆盖度低、生产力低下,其在全球碳循环中的作用被长期忽视。为探讨荒漠生态系统碳收支各组分的变化规律,以腾格里荒漠红砂(Reaumuria soongorica Maxim.)-珍珠(Salsola passerina Beg.)群落为研究对象,采用静态箱式法研究了该群落的净生态系统CO2交换量(NEE)、生态系统呼吸、土壤呼吸的日变化规律,同时将该方法所获得的NEE结果与涡动相关法观测的结果进行了比较。结果表明:(1)红砂-珍珠群落NEE的日变化表现为,在6:00—9:00左右出现一个CO2吸收的高峰值,随后在12:00—15:00左右出现一个CO2释放高峰值。红砂种群、珍珠种群和整个群落NEE的平均值分别为0.018、0.020和0.028 mg CO2m-2s-1;(2)红砂种群、珍珠种群、土壤及整个群落生态系统呼吸速率的日变化规律一致,均表现为明显的单峰变化趋势,在12:00—15:00左右出现一个CO2释放的高峰值。红砂种群、珍珠种群、土壤和整个群落的生态系统呼吸的平均值分别为:0.121、0.062、0.029和0.040 mg CO2m-2s-1。以盖度为加权因子计算得到红砂种群、珍珠种群和土壤呼吸占生态系统呼吸的比例分别为:9%、21%和70%,由此可见,生态系统呼吸主要来源于土壤呼吸。(3)将箱式法和涡动相关法观测的NEE进行比较,结果表明两种方法观测的NEE变化规律基本一致,相关系数达到0.7。采用箱式法观测的NEE高于涡动相关法观测的结果,平均值分别0.028 mg CO2m-2s-1(箱式法)和0.015 mg CO2m-2s-1(涡动相关法),涡动相关法的观测结果与箱式法观测结果的比值为0.54。综上可得,荒漠生态系统土壤呼吸的变化速率决定了生态系统呼吸的变化规律,采用箱式法可能高估了荒漠生态系统CO2的释放量。  相似文献   

12.

Light, temperature, and discharge control stream metabolism, but the response of gross primary production (GPP) and ecosystem respiration (ER) to seasonal variation in these physical drivers may differ in accordance with the types of human activities present in the catchment. Our study examined three mid-order streams in southern Ontario, Canada that differed in anthropogenic nutrient sources (i.e., sewage treatment plant effluent, sewage lagoon effluent, and agriculture), but had comparable light, temperature, and discharge regimes. For each stream, GPP and ER were estimated daily from June through November. Comparisons of paired daily metabolic rates revealed pairwise differences among all streams, with streams receiving sewage effluent having greater rates and variability of GPP and ER than the stream draining agricultural land. The two sewage influenced streams differed only in ER. Temporal patterns of GPP and ER were correlated for all streams throughout the study period and were most affected by seasonal variation in temperature, whereby effluent receiving streams responded more rapidly to increases in temperature. Our findings suggest that managers may need to balance effects of human activities with regional environmental constraints on stream metabolism to maintain and enhance the ecological condition and services of stream ecosystems.

  相似文献   

13.
SUMMARY. 1. This paper describes a continuous-flow system that we have used extensively for measurement of oxygen exchange and nitrogen transformations in different communities of lowland streams, i.e. the water, the sediment, and the macrophyte—biofilm community. The system, which is set up on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature and dissolved oxygen are measured continuously and the data stored on magnetic tape. Water samples are collected in a refrigerator and analysed using standard chemical procedures.
2. The application of the system is illustrated using results obtained during a 2-day summer experiment in a shallow macrophyte—rich stream. The biological processes in the stream were mainly associated with the macrophyte—biofilm community and the sediment, those in the water being negligible. Oxygen release was confined to the macrophyte—biofilm community, the sediment consuming oxygen both by day and by night. Whole-system gross production and dark respiration occurred at similar rates (6–7g O2 m−2 day−1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m−2 day−1.
3. The sum of the activity in the macrophyte and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream.  相似文献   

14.
香溪河河流连续统特征研究   总被引:29,自引:3,他引:29  
以香溪河附石藻类密度、藻类叶绿素a浓度、Shannon-Wiener多样性指数及生态系统初级生产力随河流级别的变化为例探索该河流的连续统特征。结果表明,附石藻类密度、藻类叶绿素a浓度和Shannon-Wiener多样性指数总体上都有随着河流级别增加而增加的趋势,但在1~3级河段之间这种趋势并不明显,甚至出现了逆转。河流初级生产力也有随河流级别增加而增加的趋势,并在第4级河流达到最大,随后有所下降。在全水系范围内河流初级生产力(P)与群落呼吸(R)比值P/R均大于1,说明香溪河是一条以自养生产为主的河流。所研究的特征并不完全与连续统概念的预测相一致,表明河流已经受到了一定程度的人为干扰。  相似文献   

15.
Differences in animal distributions and metabolic demands can influence energy and nutrient flow in an ecosystem. Through taxa-specific nutrient consumption, storage, and remineralization, animals may influence energy and nutrient pathways in an ecosystem. Here we show these taxa-specific traits can drive biogeochemical cycles of nutrients and alter ecosystem primary production and metabolism, using riverine systems that support heterogeneous freshwater mussel aggregations. Freshwater unionid mussels occur as distinct, spatially heterogeneous, dense aggregations in rivers. They may influence rates of production and respiration because their activities are spatially concentrated within given stream reaches. Previous work indicates that mussels influence nutrient limitation patterns, algal species composition, and producer and primary consumer biomass. Here, we integrate measures of organismal rates, stoichiometry, community-scaled rates, and ecosystem rates, to determine the relative source–sink nutrient dynamics of mussel aggregations and their influence on net ecosystem processes. We studied areas with and without mussel aggregations in three nitrogen-limited rivers in southeastern Oklahoma, USA. We measured respiration and excretion rates of mussels and collected a subset of samples for tissue chemistry and for thin sectioning of the shell to determine growth rates at each site. This allowed us to assess nutrient remineralization and nutrient sequestration by mussels. These rates were scaled to the community. We also measured stream metabolism at three sites with and without mussels. We demonstrated that mussel species have distinct stoichiometric traits, vary in their respiration rates, and that mussel aggregations influence nutrient cycling and productivity. Across all mussel aggregations, we found that mussels excreted more nitrogen than they sequestered into tissue and excreted more phosphorus than they sequestered except at one site. Furthermore, gross primary productivity was significantly greater at reaches with mussels. Collectively, our results indicate that mussels have ecosystem-level impacts on nutrient availability and production in nutrient-limited rivers. Within these streams, mussels are affecting the movement of nutrients and altering nutrient spiralling.  相似文献   

16.
This paper describes a portable chamber that measures net primary production of stream periphyton using a 14C uptake method. The unique feature is that substrates are moved through water at a velocity of 20 cm s −1 rather than moving water over substrates. The chamber consists of a plexiglass cylinder that is 9 cm in height and 15 cm in diameter. On the top of the cylinder is a DC gearmotor powered by a 12 volt, deep cycle, marine battery. The motor turns a shaft that rotates a 13.3 cm plexiglass plate at a velocity of 20 cm s −1 . Small tiles (3.2 cm × 3.2 cm × 0.5 cm) that have natural algal assemblages are mounted on the rotating plate. After adding 500 ml of filtered stream water and 185 kBq (5 μCi) NaH14CO3 to the chamber, the chambers are placed along a stream margin for 5 h. Measurements of 14C uptake by algae on the tiles provide estimates of net primary production (NPP). To assess the sensitivity and practicality of the chamber, algal primary production was measured in open and closed canopy sections of Kingsley Creek, Randallsville, New York. In autumn, primary production was higher in the open than closed canopy section and NPP was lower in spring in both sections probably because of scouring of algae due to snowmelt.  相似文献   

17.
Inter-biome comparison of factors controlling stream metabolism   总被引:15,自引:0,他引:15  
1. We studied whole-ecosystem metabolism in eight streams from several biomes in North America to identify controls on the rate of stream metabolism over a large geographic range. The streams studied had climates ranging from tropical to cool-temperate and from humid to arid and were all relatively uninfluenced by human disturbances.
2. Rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) were determined using the open-system, two-station diurnal oxygen change method.
3. Three general patterns in metabolism were evident among streams: (1) relatively high GPP with positive NEP (i.e. net oxygen production) in early afternoon, (2) moderate primary production with a distinct peak in GPP during daylight but negative NEP at all times and (3) little or no evidence of GPP during daylight and a relatively constant and negative NEP over the entire day.
4. Gross primary production was most strongly correlated with photosynthetically active radiation (PAR). A multiple regression model that included log PAR and stream water soluble reactive phosphorus (SRP) concentration explained 90% of the variation in log GPP.
5. Ecosystem respiration was significantly correlated with SRP concentration and size of the transient storage zone and, together, these factors explained 73% of the variation in R. The rate of R was poorly correlated with the rate of GPP.
6. Net ecosystem production was significantly correlated only with PAR, with 53% of the variation in log NEP explained by log PAR. Only Sycamore Creek, a desert stream in Arizona, had positive NEP (GPP: R  > 1), supporting the idea that streams are generally net sinks rather than net sources of organic matter.
7. Our results suggest that light, phosphorus concentration and channel hydraulics are important controls on the rate of ecosystem metabolism in streams over very extensive geographic areas.  相似文献   

18.
Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate–nitrogen (NO3–N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO3–N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO3–N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light–dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO3–N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO3–N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.  相似文献   

19.
Water flow causes complex patterns of sediment disturbance in sand-bed streams, but effects on stream metabolism resulting from different depths of sediment scour and fill are poorly known. We assessed such effects by manually disturbing sandy sediments of 16 experimental outdoor flumes to two different depths (1 and 4 cm) during an early and a more advanced stage of stream community succession. To separate effects on heterotrophic and autotrophic metabolism, half of the flumes were permanently covered. At the early successional stage, sediment disturbance did not affect net community production (NCP), while sediment mixing reduced production independent of disturbance depth in the later stage. Microbial respiration, in contrast, was significantly stimulated when sediment was mixed to greater depth. These results suggest that disturbing sediments during early successional stages has no effect on whole-stream metabolism, whereas at later stages, deep sediment disturbance can lead to a transitory shift toward heterotrophy. The recovery time of NCP from perturbation was independent of disturbance depth. Similar trajectories observed after deep and shallow sediment disturbance indicate that delayed recovery was not simply due to mixing algae into deeper sediment layers but primarily a result of disrupting the fine structure of the surface sediment.  相似文献   

20.
作为ChinaFLUX的重要组成部分,从2002年年底开始利用涡度协方差技术在长白山温带混交林林冠上层和下层进行连续通量观测,这为量化林冠下层CO2通量对整个森林生态系统碳收支的贡献提供了一条有效途径.利用2003年林冠上层和林冠下层的观测数据,研究表明林冠下层夜间的CO2通量与5 cm深度的土壤温度存在明显的指数正相关关系.林冠下层的呼吸通量与箱式法观测的土壤呼吸通量之间具有很好的一致性(R2=0.77),二者在全年都与整个森林的光合产物量相耦合,且都在7~8月份达到最大值.林冠下层的呼吸量和土壤呼吸量分别为770 g Cm-2a-1和703 g Cm-2a-1,占整个森林生态系统呼吸年总量的比重高达59.88%和54.69%.林冠下层的光合作用呈双峰型季节变化,两个峰值分别出现在5月中旬和8月下旬.尽管全年林冠下层光合产物量为87 g Cm-2a-1,对整个森林光合产物量的贡献率仅为5.69%,但林冠郁闭度低的4、5月和10月份,林冠下层的光合产物贡献率也分别达到19.99%、21.06%和14.53%.林冠下层净初级生产力的季节动态受该层呼吸作用的季节变异控制,林冠下层在全年都表现为碳源,其净碳排放速率在8月份达到最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号