首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The requirements of the European Water Framework Directive (WFD), aimed at an integrative assessment methodology for evaluating the ecological status of water bodies are frequently being achieved through multimetric techniques, i.e. by combining several indices, which address different stressors or different components of the biocoenosis. This document suggests a normative methodology for the development and application of Multimetric Indices as a tool with which to evaluate the ecological status of running waters. The methodology has been derived from and tested on a European scale within the framework of the AQEM and STAR research projects, and projects on the implementation of the WFD in Austria and Germany. We suggest a procedure for the development of Multimetric Indices, which is composed of the following steps: (1) selection of the most suitable form of a Multimetric Index; (2) metric selection, broken down into metric calculation, exclusion of numerically unsuitable metrics, definition of a stressor gradient, correlation of stressor gradients and metrics, selection of candidate metrics, selection of core metrics, distribution of metrics within the metric types, definition of upper and lower anchors and scaling; (3) generation of a Multimetric Index (general or stressor-specific approach); (4) setting class boundaries; (5) interpretation of results. Each step is described by examples.  相似文献   

2.
Ofenböck  Thomas  Moog  Otto  Gerritsen  Jeroen  Barbour  Michael 《Hydrobiologia》2004,516(1-3):251-268
We investigated four stream types in four different bioregions, classified by catchment area and altitude, and stressed by different degrees of organic pollution and habitat alteration. We examined a macro-invertebrate based multimetric approach for Austrian rivers as a potential assessment method within the European Water Framework Directive. Benthic macro-invertebrate data (100 samples including reference sites) were used to develop a multimetric index for each stream type and targeted stressors. Sites were pre-classified based on physical, chemical, and land use criteria into five ecological quality classes. More than 200 biological metrics were tested for their sensitivity to the targeted stressors, their spatial and temporal variability and their ability to discriminate between different types and degrees of stress. Metrics for index development were selected to reflect different levels of information including ecosystem, community, and individual levels (Karr, 1991; Barbour et al., 1995; Gerritsen, 1995). Combinations of metrics were selected to distinguish best between non or slightly impaired and stressed sites (evaluated by calculating discrimination efficiency values and power analysis). The resulting four indices comprised seven to nine metrics from five to seven metric categories, and distinguished reference/slightly disturbed sites from stressed sites with close to 100% efficiency. The indices can form the basis for stressor-specific assessment of stream condition.  相似文献   

3.
Overview and application of the AQEM assessment system   总被引:1,自引:0,他引:1  
Hering  Daniel  Moog  Otto  Sandin  Leonard  Verdonschot  Piet F.M. 《Hydrobiologia》2004,516(1-3):1-20
The main objective of the European Union (EU) funded project AQEM1was to develop a framework of an assessment system for streams in Europe based on benthic macroinvertebrates that fulfils the requirements of the EU Water Framework Directive. Initial assessment methods for 28 European stream types and more generally applicable tools for stream biomonitoring in Europe were generated. The development of the system was based on a newly collected data set covering stream types in Austria, the Czech Republic, Germany, Greece, Italy, The Netherlands, Portugal and Sweden. Altogether, 901 benthic invertebrate samples were taken using a standardised multi-habitat sampling procedure and a large number of parameters describing the streams and their catchments was recorded for all sampling sites. From the stream and catchment characteristics measures of stress were derived. A large number of metrics was tested independently for each of the stream types, to identify the response of each metric to degradation of a site. This process resulted in up to 18 core metrics for the individual stream types, which were combined into a different multimetric index in each country. The multimetric AQEM assessment system is used to classify a stream stretch into an Ecological Quality Class ranging from 5 (high quality) to 1 (bad quality) and often provides information on the possible causes of degradation. AQEM provides a taxa list of 9557 European macroinvertebrate taxa with associated autecological information, a software package for performing all the calculations necessary for applying the multimetric AQEM assessment system and a manual describing all aspects of the application of the system from site selection to data interpretation.  相似文献   

4.
From 1994 to 2000, 154 sites belonging to the grayling and trout zones were used to develop a fish-based multimetric Index of Biotic Integrity (IBI) as a tool to assess upstream brooks in Flanders (Belgium). All sites had a slope of at least 3‰ and a maximum width of 4.5 m. Fish assemblages were surveyed by electrofishing. From 28 candidate metrics 9 metrics were selected using ecological criteria and statistical analyses. The IBI was defined as the average of these 9 metrics after scoring them as 1, 3 or 5 by a modified trisection method and five integrity classes were defined to comply with the European Water Framework Directive (WFD). The IBI was tested internally by comparison with habitat quality scores at sites. A similar comparison was done using an independent set of data from sites of known ecological quality. Our IBI clearly distinguished good sites from disturbed sites and heavily disturbed sites from moderately disturbed sites, thereby meeting the criteria imposed by the WFD.  相似文献   

5.
6.
Ecosystem goods and services in streams are impaired when their biotic communities are degraded by anthropogenic stressors. An index of biotic integrity (IBI) translates community structure into a standardized ecoregion-specific stream health score. Documenting stream health is especially important in the Northern Glaciated Plains (NGP) Ecoregion, which is undergoing rapid landscape alterations through increased agriculture production. Our objectives were to develop a fish IBI and validate candidate reference sites for NGP wadeable perennial streams. Fish were sampled from 54 sites (consisting of reference sites, known-condition least and most disturbed sites, and random sites) during summers 2006–2011. Candidate metrics were sorted into nine metric classes based on attributes of fish assemblage form and function. Metric values were screened using metric range, signal-to-noise ratios, responsiveness to disturbance, and redundancy tests until each metric class contained only those metrics most responsive to anthropogenic stressors. The final IBI consisted of six metrics that were reflective of prairie stream fish assemblages, and differentiated between known-condition least and most disturbed sites. The mean reference sampling site IBI scores were found to be similar to both least and most disturbed sites (Mann–Whitney U-test; P < 0.05). Twelve reference site scores were below the NGP's median (69), whereas the other 11 sites were above the median and were representative of least disturbed conditions. We now have developed a standardized bioassessment tool for evaluating stream health, as well as a baseline for long-term monitoring in a dynamic ecoregion.  相似文献   

7.
One of the major objectives of the VALIMAR project is to determine the ecological significance of various fish biomarker studies as indicators of chronic pollution in small streams in southwest Germany. Results of these fish biomarker investigations were compared to information from complementary studies on the meiobenthos, macrobenthos, and fish community studies to assess the ecological significance of these biomarker investigations. The main objective of this study was to provide biological assessments of the biomarker sites on the basis of the macrozoobenthos communities. Since no validated framework for the assessment of the biological integrity existed in Germany, two multimetric approaches were adapted to the whole stream system by investigating benthos and fish communities of 46 sites of varying degrees of human disturbance. Assessment of the communities was conducted in accordance with the European Community Water Framework Directive. Species distribution of benthos depended upon stream type and pollution status of streams. Biological attributes and bioindices of benthos communities, however, did not correlate with typological parameters like stream size or dominant substrate but correlated better with pollution parameters like conductivity or chloride concentration. Using a set of 18 measures, such as portion of sessile individuals, Rheoindex, oxygen availability index, and portion of pool dwellers, the benthos communities were characterized and evaluated. The composition of the fish communities was mainly determined by stream type, pollution and migration barriers. The influence of chemical parameters could be assessed by developing a“fish chemistry index”, which calculatesthe similarity of the present fish community with the potential natural community, but excludes those species strongly effected by deficits in stream channel morphology. Both fish chemistry index and benthic indices strongly correlated with pollution index parameters, clearly distinguishing between the more polluted Körsch sites and the less pollutedKrähenbach and Aich sites. Most of the single bioindices as well as overall assessment by multimetric indices indicated a gradient of decreasing quality from the reference stream Krähenbach to theslightly polluted Aich and Körsch upstream site (KE, upstream of all sewage treatment plants) and finally to the most polluted Körsch site directlybelow the most upstream sewage treatment plant (KD). According to the Water Framework Directive, the classification of ecological status of the benthos communities ranges from “high” (best of 5 classes) forthe reference stream to “bad” (5th class) for KD. Assessment of the fish community tends to score somewhat worse than the benthos due to deficits in morphological quality of the stream reaches. The benthos assessment and the newlydeveloped “fish chemistry index” correlated well with chemical water quality and hence with biomarkers, whereas ecological status of fish and overall ecological status was also influenced by river morphology. In conclusion all tested assessment methods on biocoenotic level are reliable indicators for the degree of human disturbance on small streams, whereas biomarkers are more suited for risk assessment and the investigation ofcause-effect-relationships.  相似文献   

8.
Data on phytoplankton, macrophytes, benthic invertebrates and fish from more than 2000 lakes in 22 European countries were used to develop and test metrics for assessing the ecological status of European lakes as required by the Water Framework Directive. The strongest and most sensitive of the 11 metrics responding to eutrophication pressure were phytoplankton chlorophyll a, a taxonomic composition trophic index and a functional traits index, the macrophyte intercalibration taxonomic composition metric and a Nordic lake fish index. Intermediate response was found for a cyanobacterial bloom intensity index (Cyano), the Ellenberg macrophyte index and a multimetric index for benthic invertebrates. The latter also responded to hydromorphological pressure. The metrics provide information on primary and secondary impacts of eutrophication in the pelagic and the littoral zone of lakes. Several of these metrics were used as common metrics in the intercalibration of national assessment systems or have been incorporated directly into the national systems. New biological metrics have been developed to assess hydromorphological pressures, based on aquatic macrophyte responses to water level fluctuations, and on macroinvertebrate responses to morphological modifications of lake shorelines. These metrics thus enable the quantification of biological impacts of hydromorphological pressures in lakes.  相似文献   

9.
Ecological water quality problems are frequently connected to increment of phytoplankton productivity and overdominance of some phytoplankton species. Metrics that show monotonously increasing or decreasing tendencies along stressor gradients is recommended for ecological state assessment. Diversity metrics are influenced by various physical disturbances and show high within-year variability; thus, there is no agreement on the usefulness of these metrics as state indicators.To test the usefulness of phytoplankton diversity in ecological state assessment we investigated the productivity–diversity relationships for lakes and rivers in the Carpathian Basin (Hungary). We demonstrated that the shape of productivity–diversity relationship depends on the investigated water body type. Regarding lakes, hump-shaped relationship was found for all computed metrics. Parallel with the increase in phytoplankton productivity values, diversity metrics showed monotonously increasing tendencies in rhithral and decreasing tendencies in large potamal rivers. We found no systematic relationship in the case of small lowland rivers.Changes of diversity metrics calculated for species and functional groups showed similar tendencies within the types, only the slopes of regression lines differ each other.The use of diversity metrics as ecological state indicators should be restricted to water body types where diversity decreases or increases monotonously with phytoplankton biomass. Regarding the lakes the use of diversity metrics is not recommended for ecological state assessment. In rhithral and large potamal river assessment, application of diversity metrics should be strongly considered. We demonstrated that diversity metrics can be useful components of multimetric indices proposed to use by the Water Framework Directive.  相似文献   

10.
A gap in the European Water Framework Directive (WFD) is addressed, aiming for the development of an ecological quality status assessment tool based solely on the Biological Quality Element benthic macroinvertebrates from intertidal rocky shores. The proposed Rocky shore Macroinvertebrates Assessment Tool (RMAT) was tested and validated along disturbance gradients (organic enrichment). During the whole process, the response of widely used metrics (e.g. Hurlbert index, Shannon-Wiener index, AZTI’s Marine Biotic Index; Bentix biotic index) and models (i.e., metrics combined) was compared to results provided by the Marine Macroalgae Assessment Tool to the same sampling sites.The RMAT is a multimetric index compliant with the WFD based on the benthic macroinvertebrates community, combining ‘abundance’ (Hurlbert index) and ‘taxonomic composition’ (Bentix index using density and biomass data) metrics. It performed well along anthropogenic disturbance gradients, showing ecological quality increasing from close to far away from the disturbance.The RMAT is a promising tool for rocky shore ecological assessment in the scope of the WFD or other monitoring activities worldwide.  相似文献   

11.
A multimetric fish Index of Biotic Integrity (IBI) was composed to assess the biotic integrity of Flandrian water bodies. As fish communities differ substantially between standing waters, running waters of the bream zone and running waters of the barbel zone, eight candidate metrics for each of these water types or zones were identified, representing three major classes of biological attributes. These are species richness and composition, fish condition and abundance, trophic composition. The metrics were tested and modified where needed. The IBI was applied throughout Flanders on 104 locations in standing waters, 500 locations in waters of the bream zone and 257 locations in waters of the barbel zone. Standing waters scored substantially different from running waters. Standing waters rarely contained no fish at all, but their fish communities were very often poor to very poor. Waters of the bream and barbel zone were often fishless (respectively 40% and 35% of all locations contain no fish), but the locations with fish usually scored reasonable to poor. Only 18.5% of all locations were classified as reasonable to excellent (IBI classes 4 or lower on a scale from 1 to 9) and were considered to satisfy the basic ecological quality demands. The Leie-, Dijle-, Dender- and Schelde-basins had a very poor quality (more than 50% of the locations contained no fish). The Maas-, Grote and Kleine Nete-basins scored rather well, with respectively, 44%, 48% and 68% of the locations achieving an IBI of 4 or lower. The IBI is a valuable and complementary tool to assess the ecological quality of water bodies as suggested in the proposal for a Water Framework Directive by the European Commission.  相似文献   

12.
Biological indicators are increasingly being used as integrative measures of the ecosystem health in streams, particularly those using macroinvertebrate assemblage composition. Monitoring biological quality of rivers has not a long tradition in some Mediterranean European countries like Spain. Several macroinvertebrate metrics have been recently proposed to assess ecological status in Mediterranean streams, so it is necessary to compare the use of proposed biological quality metrics to select the most appropriate ones.In the present work, two classic richness metrics (total number of families and number of the Ephemeroptera, Plecoptera and Trichoptera families), three indices (IBMWP, IASPT and t-BMWQ) and two multimetric indices, recently proposed to be used in Mediterranean streams (ICM-9 and ICM-11a or IMMi-L), were compared by the analysis of the sensitivity of these metrics to a multiple stressor gradient which reflected the main pressures present in the study area. For this purpose, data from 193 sites sampled in spring (95 reference sites and 98 disturbed sites) belonging to five different Mediterranean stream types present in 35 basins were studied.The results showed that the adjusted regression coefficients (r2) for all seven metrics in the exponential regression models were higher than linear ones, thus indicating an exponential relationship between metrics and the environmental alteration. The two studied multimetric indices presented higher regression coefficients (r2 = 0.590–0.669) than the three indices (r2 = 0.524–0.574) and the two metrics (r2 = 0.471–0.525), therefore showing a better response to a stressor gradient in Mediterranean streams. Within the multimetric indices group, ICM-11a showed the highest regression coefficients. Based on the results obtained, we suggest using the ICM-11a, apart from the IBMWP, to assess ecological status in Mediterranean streams.  相似文献   

13.
Because diatom communities are subject to the prevailing water quality in the Great Lakes coastal environment, diatom‐based indices can be used to support coastal‐monitoring programs and paleoecological studies. Diatom samples were collected from Great Lakes coastal wetlands, embayments, and high‐energy sites (155 sites), and assemblages were characterized to the species level. We defined 42 metrics on the basis of autecological and functional properties of species assemblages, including species diversity, motile species, planktonic species, proportion dominant taxon, taxonomic metrics (e.g., proportion Stephanodiscoid taxa), and diatom‐inferred (DI) water quality (e.g., DI chloride [Cl]). Redundant metrics were eliminated, and a diatom‐based multimetric index (MMDI) to infer coastline disturbance was developed. Anthropogenic stresses in adjacent coastal watersheds were characterized using geographic information system (GIS) data related to agricultural and urban land cover and atmospheric deposition. Fourteen independent diatom metrics had significant regressions with watershed stressor data; these metrics were selected for inclusion in the MMDI. The final MMDI was developed as the weighted sum of the selected metric scores with weights based on a metric’s ability to reflect anthropogenic stressors in the adjacent watersheds. Despite careful development of the multimetric approach, verification using a test set of sites indicated that the MMDI was not able to predict watershed stressors better than some of the component metrics. From this investigation, it was determined that simpler, more traditional diatom‐based metrics (e.g., DI Cl, proportion Cl‐tolerant species, and DI total phosphorus [TP]) provide superior prediction of overall stressor influence at coastal locales.  相似文献   

14.
This study describes the development of a macroinvertebrate based multimetric index for two stream types, fast and slow running streams, in the Netherlands within the AQEM project. Existing macroinvertebrate data (949 samples) were collected from these stream types from all over the Netherlands. All sites received a ecological quality (post-)classification ranging from 1 (bad status) to 4 (good status) based on biotic and abiotic variables, using a combination of multivariate analysis and expert-judgement. A number of bioassessment metrics was tested for both stream types (fast and slow running streams) to examine their power to discriminate between streams of different ecological quality within each stream type. A metric was selected for inclusion in the final multimetric index when there was no overlap of the 25th and 75th percentile between one (or more) ecological quality class(es). Out of all metrics tested, none could distinguish between all four ecological quality classes without overlap of the 25th and 75th percentile between one or more of the classes. Instead, metrics were selected that could distinguish between one (or more) ecological quality class(es) and all others. Finally, 10 metrics were selected for the assessment of slow running streams and 11 metrics for the assessment of fast running streams. Class boundaries were established, to make the assignment of scores to the individual metrics possible. The class boundaries were set at the 25th and/or 75th percentile of the individual metric values. The individual metrics were combined into a multimetric index. Calibration showed that 67% of the samples from slow running streams and 65% of the samples from fast running streams were classified in accordance to their post-classification. In total, only 8% of the samples differed more than one quality class from the post-classification. The multimetric index was validated with data collected in the Netherlands from 82 sites for the purpose of the AQEM project. Validation showed that 54% of the streams were classified correctly.  相似文献   

15.
In the Water Framework Directive (European Union) context, a multimetric fish based index is required to assess the ecological status of French estuarine water bodies. A first indicator called ELFI was developed, however similarly to most indicators, the method to combine the core metrics was rather subjective and this indicator does not provide uncertainty assessment. Recently, a Bayesian method to build indicators was developed and appeared relevant to select metrics sensitive to global anthropogenic pressure, to combine them objectively in an index and to provide a measure of uncertainty around the diagnostic. Moreover, the Bayesian framework is especially well adapted to integrate knowledge and information not included in surveys data. In this context, the present study used this Bayesian method to build a multimetric fish based index of ecological quality accounting for experts knowledge. The first step consisted in elaborating a questionnaire to collect assessments from different experts then in building relevant priors to summarize those assessments for each water body. Then, these priors were combined with surveys data in the index to complement the diagnosis of quality. Finally, a comparison between diagnoses using only fish data and using both information sources underlined experts knowledge contribution. Regarding the results, 68% of the diagnosis matched demonstrating that including experts knowledge thanks to the Bayesian framework confirmed or slightly modified the diagnosis provided by survey data but influenced uncertainty around the diagnostic and appeared especially relevant in terms of risk management.  相似文献   

16.
Besides pollution, lakes are affected by human alterations of lake-shore morphology. However, ecological effects of such alterations have rarely been studied systematically. Hence, we developed tools to assess the ecological effects of anthropogenic morphological alterations on European lake-shores based on pressure-specific response patterns of littoral macroinvertebrate community composition. Littoral invertebrates were sampled from 51 lakes in seven European countries. Sampling covered a range of natural to heavily morphologically degraded sites including natural shorelines, recreational beaches, ripraps and retaining walls. Biological data were supplemented by standardized morphological data that were collected via a Lake Habitat Survey (LHS) protocol and subsequently used to develop a morphological stressor index. Two biotic multimetric indices were developed based on habitat-specific samples (Littoral Invertebrate Multimetric based on HAbitat samples, LIMHA) and composite samples (Littoral Invertebrate Multimetric based on COmposite samples, LIMCO) through correlations with the morphological stressor index. Similarity analyses showed strong spatial differences in macroinvertebrate community composition between four main geographical regions, i.e. Western, Northern, Central and Southern Europe. The morphological stressor index as well as LIMCO and LIMHA have been developed for each geographical region specifically, thereby optimizing correlations of LIMCO and LIMHA with the respective morphological stressor index. The metric composition of LIMCO and LIMHA and their correlation coefficients with the morphological stressor index are comparable to existing national and regional methods that assess morphological lakeshore degradation via macroinvertebrate communities. Hence, LIMCO and LIMHA indices constitute a new stressor-specific assessment tool that enables comparable lake morphology assessment across Europe, as it has been developed involving a uniform methodology followed by regionalized optimization. These tools fulfil the standards of the EU Water Framework Directive and thus may complement existing assessment approaches used in lake monitoring focusing solely on lake eutrophication so far.  相似文献   

17.
A fish – based index for the assessment of the ecological quality of natural temperate lakes was developed, in accordance to the requirements of the Water Framework Directive (WFD) 2000/60/EC. As a case study, 11 natural lakes located at northern and western Greece were selected. Fish surveys were conducted during mid summer to mid autumn in 2010, 2011 and 2012 using Nordic gillnets and electrofishing. Environmental parameters and anthropogenic pressures were assessed for each lake. Fish species richness, abundance, trophic, reproductive and habitat functional guilds were used for extracting a set of 107 metrics, meeting the requirements of the WFD. All metrics were initially tested as candidates for the index development. A stepwise linear regression of each metric against environmental parameters (lake area, altitude, maximum depth, alkalinity) and anthropogenic pressures (drainage area covered by non-natural land uses – NNLC, water total phosphorus concentrations – TP, Lake Habitat Modification Score – LHMS) was initially conducted for ensuring pressure-response relationships. Reference conditions for each lake were estimated by the hindcasting procedure and the ecological quality for each lake was expressed as the ecological quality ratio (EQR) by a value ranging from 0 (poor quality) to 1 (excellent quality). Two fish fauna metrics, the relative numerical abundance of introduced species (Introduceda) and the relative biomass of omnivorous species (OMNIb) were finally extracted as the most significant, responding to LHMS and TP, respectively. The final index was expressed as the mean values of the EQRs of these two metrics. The multimetric fish index presented herein could serve as a tool for assessing the ecological quality of natural lakes at broad geographical scale and generally, in the Mediterranean temperate lakes with similar hydromorphological characteristics.  相似文献   

18.
This paper presents an advanced version of the Index of Biotic Integrity (IBI), a multimetric index to indicate ecosystem health. The multimetric index has been adapted in such a way that it not only indicates overall condition but also specific causes of environmental disturbance. The newly developed index (a) uses data of tolerant as well as intolerant species in a single metric to indicate environmental disturbance, (b) does not require knowledge about species from the literature, and (c) can be applied to artificial landscapes.The metrics proposed here consist of indicator species assemblages that are selected directly for their relationship with an environmental component or specific type of environmental degradation. Thus, each metric indicates a type of environmental concern, which enables conservation practices to be targeted more effectively. Species assemblages for each single metric consist of a combination of species that can be negatively and positively related to environmental disturbances, providing a better indication of stream ecosystem health.The area studied was assumed to be too diverse for one single index. Canonical Indirect-Gradient Principal Component Analysis indicated that the optimal division of subindices based on stream typology was for streams with drainage basin sizes <10 km2 and >10 km2. Pearson Product-Moment Correlations were used to identify relationships between anthropogenic disturbances and the composition and abundance of fish species at impacted as well as undisturbed sites. This index proved to be useful for indicating overall stream ecosystem health as well as local onsite environmental disturbances or the environmental components of greatest concern. This index does require extensive information about measured levels of anthropogenic disturbances with the accompanying composition and abundance of fish species.  相似文献   

19.
20.
Wooded biomes converted to human-modified landscapes (HML) are common throughout the tropics, yielding small and isolated forest patches surrounded by an agricultural matrix. Diverse anthropogenic interventions in HMLs influence patches in complex ways, altering natural dynamics. Assessing current condition or ecological integrity in these patches is a challenging task for ecologists. Taking the Brazilian Atlantic Forest as a case study, we used the conceptual framework of the Index of Biotic Integrity (IBI), a multimetric approach, to assess the ecological integrity of eight small forest patches in a highly disturbed HML with different configurations and histories. The IBI was developed using bird assemblages found in these patches, and its performance was compared with analytical approaches commonly used in environmental assessment, such as general richness and Shannon’s diversity index. As a first step, the IBI procedure identifies an existing gradient of human disturbance in the study region and checks which biotic characteristics (candidate metrics) vary systematically across the gradient. A metric is considered valid when its’ relationship with the gradient provides an ecological interpretation of the environment. Then, the final IBI is elaborated using each valid metric, obtaining a score for each site. Over one year of sampling, 168 bird species were observed, providing 74 different bird candidate metrics to be tested against the disturbance gradient. Seven of them were considered valid:richness of threatened species; richness of species that use both “forest and non-forest” habitats; abundance of endemics, abundance of small understory-midstory insectivores, abundance of exclusively forest species; abundance of non-forest species, and abundance of species that forage exclusively in the midstory stratum. Each metric provided complementary information about the patch’s ecological integrity. The resulting IBI showed a significant linear relationship with the gradient of human disturbance, while total species richness and Shannońs diversity index did not. Application of numerical approaches, such as total species richness and Shannon’s diversity, did not distinguish ecological traits among species. The IBI proved better for assessing and interpreting ecological and environmental condition of small patches in highly disturbed HML. The IBI framework, its multimetric character, and the ease with which it can be adapted to diverse situations, make it an effective approach for assessing environmental conditions in the Atlantic Forest region, and also for many other small forest patches in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号