首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Countertransport of GlcNAc was examined in membrane vesicles prepared from rat liver lysosomes which had been lysed by exposure to 5 mM-methionine methyl ester. These vesicles have a random orientation, have intact ATP-dependent acidification and are largely free of soluble hydrolases. Vesicular volume (24.69 +/- 4.51 microliters/mg of protein) was greater than that of lysosomes (3.02 +/- 0.56 microliters/mg of protein), corresponding to a doubling of diameter. Characteristics of GlcNAc transport in vesicles (Km = 1.3 mM) were similar to those observed in intact lysosomes (Km = 4.4 mM). Sulphation or phosphorylation of the substrate resulted in loss of recognition by the carrier. Hydroxyl group orientation at multiple positions did not appear to be critical, whereas orientation of the acetyl group appeared to have a fundamental role in recognition by the carrier. Based on these criteria, phenyl isothiocyanate-GlcNAc (PITC-GlcNAc) was identified as a possible substrate for transport. Under mild conditions, PITC-GlcNAc reversibly inhibited GlcNAc countertransport in lysosomes and vesicles. This and other modified substrates may be of value in identification of the GlcNAc/GalNAc lysosomal transporter. Lysosomal membrane vesicle preparation is a technique that should be useful for the study of other lysosomal transport systems.  相似文献   

2.
W A Gahl 《Enzyme》1987,38(1-4):154-160
Two lysosomal storage diseases are now known to result from impaired transport of small molecules across the lysosomal membrane. In cystinosis, the disulfide amino acid, cystine, accumulates and in free sialic acid storage disorders, N-acetylneuraminic acid is stored. The lysosomal cystine carrier exhibits saturability, counter-transport, temperature dependence, and stereospecificity; it is highly specific for molecules resembling cystine. Less is known about sialic acid transport, but its temperature dependence and deficiency in certain autosomal-recessive human mutations strongly suggests that it is a carrier-mediated process. Cystine and sialic acid serve as prototypes for amino acids and sugars transported by specific lysosomal membrane carriers, whose impairment results in lysosomal storage disorders.  相似文献   

3.
Following necrobiosis of the smooth muscle cells (SMC) of the vessel wall, lysosomes are still able to live for a time in the extracellular space. Here they are known as lysosomal matrix vesicles (MV). Their lysosomal origin can be confirmed by the immunocytochemical demonstration of beta-N-acetylglucosaminidase (beta-NAG) in extracellular MV. A positive reaction to the enzyme-cytochemical test for acid phosphatase establishes that these lysosomal MV are enzymatically active. The role of the lysosomal MV in the pathogenesis of vascular diseases is seen in an uncontrolled, locally limited destruction and alteration of the intercellular substance.  相似文献   

4.
Summary Following necrobiosis of the smooth muscle cells (SMC) of the vessel wall, lysosomes are still able to live for a time in the extracellular space. Here they are known as lysosomal matrix vesicles (MV). Their lysosomal origin can be confirmed by the immunocytochemical demonstration of -N-acetylglucosaminidase (-NAG) in extracellular MV. A positive reaction to the enzyme-cytochemical test for acid phosphatase establishes that these lysosomal MV are enzymatically active. The role of the lysosomal MV in the pathogenesis of vascular diseases is seen, in an uncontrolled, locally limited destruction and alteration of the intercellular substance.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

5.
Vitamin B12 transport by rat liver lysosomal membrane vesicles   总被引:1,自引:0,他引:1  
Vitamin B12 (hydroxycobalamin) is endocytosed by mammalian cells as a complex with transcobalamin II and then processed to free B12 in lysosomes. The mechanism by which free B12 becomes available for subsequent cellular metabolism has been uncertain. Lysosomal transport of cyanocobalamin (B12) was examined using membrane vesicles prepared from Percoll gradient purified lysosomes. B12 uptake by vesicles was dependent upon pH and was inhibited by the protonophore CCCP. Transport exhibited saturation kinetics with a Km of 3.5 microM and temperature dependence with a Q10 of 1.8. Uptake of B12 was dependent upon divalent cations and was inhibited by EDTA. Preparation of vesicles in the presence of 100 microM B12 resulted in stimulation of uptake consistent with a mechanism of countertransport. Excess cyanocobalamin, adenosylcobalamin, methylcobalamin, or cobinamide dicyanide inhibited uptake of B12. Trans-stimulation studies showed that only the first three compounds are actually transported species with cyanocobalamin as the preferred substrate. We conclude that lysosomes have a specific transport system for vitamin B12 that results in release of this enzyme cofactor to the cytoplasm.  相似文献   

6.
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder resulting from mutations in a family of genes required for efficient transport of lysosomal-related proteins from the trans-Golgi network to a target organelle. To date, there are several genetically distinct forms of HPS. Many forms of HPS exhibit aberrant trafficking of melanosome-targeted proteins resulting in incomplete melanosome biogenesis responsible for oculocutaneous albinism observed in patients. In HPS-1, melanosome-targeted proteins are localized to characteristic membranous complexes, which have morphologic similarities to macroautophagosomes. In this report, we evaluated the hypothesis that HPS-1-specific membranous complexes comprise a component of the lysosomal compartment of melanocytes. Using indirect immunofluorescence, an increase in co-localization of misrouted tyrosinase with cathepsin-L, a lysosomal cysteine protease, occurred in HPS-1 melanocytes. In addition, ribophorin II, an integral endoplasmic reticulum protein that is also a component of macroautophagosomes, and LC3, a specific marker of macrophagosomes, demonstrated localization to membranous complexes in HPS-1 melanocytes. At the electron microscopic level, the membranous complexes exhibited acid phosphatase activity and localization of exogenously supplied horseradish peroxidase (HRP)-conjugated gold particles, indicating incorporation of lysosomal and endosomal components to membranous complexes, respectively. These results confirm that membranous complexes of HPS-1 melanocytes are macroautophagosomal representatives of the lysosomal compartment.  相似文献   

7.
Lysosomal proteins including myeloperoxidase (MPO), lysozyme (LZ), CD68 and lactoferrin (LF), represent classical immunohistology marker molecules. Additionally, flow cytometry can be used to detect and quantify their expression at the single cell level in phenotypically defined leukocyte subsets. Recent results demonstrated that expression densities of these intracellular proteins vary among myeloid cell subsets, thus enabling insights into novel subset biology and development. Additionally, whole blood staining protocols allow detection of lysosomal proteins in infrequent leukocyte subsets such as circulating CD34+ hematopoietic progenitors and dendritic cells (DC). Thus, information on leukocyte subset distribution and aberrant phenotypes might be gained for diagnositic purposes. Finally, FACS detection of MPO and LZ proved to be of high value for the lineage diagnosis of acute leukemias.  相似文献   

8.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defective lysosome-related organelles. Here, we report the identification of two HPS patients with mutations in the beta 3A subunit of the heterotetrameric AP-3 complex. The patients' fibroblasts exhibit drastically reduced levels of AP-3 due to enhanced degradation of mutant beta 3A. The AP-3 deficiency results in increased surface expression of the lysosomal membrane proteins CD63, lamp-1, and lamp-2, but not of nonlysosomal proteins. These differential effects are consistent with the preferential interaction of the AP-3 mu 3A subunit with tyrosine-based signals involved in lysosomal targeting. Our results suggest that AP-3 functions in protein sorting to lysosomes and provide an example of a human disease in which altered trafficking of integral membrane proteins is due to mutations in a component of the sorting machinery.  相似文献   

9.
In crustaceans, the hepatopancreas is the major organ system responsible for heavy metal detoxification, and within this structure the lysosomes and the endoplasmic reticulum are two organelles that regulate cytoplasmic metal concentrations by selective sequestration processes. This study characterized the transport processes responsible for zinc uptake into hepatopancreatic lysosomal membrane vesicles (LMV) and the interactions between the transport of this metal and those of calcium, copper, and cadmium in the same preparation. Standard centrifugation methods were used to prepare purified hepatopancreatic LMV and a rapid filtration procedure, to quantify 65Zn2+ transfer across this organellar membrane. LMV were osmotically reactive and exhibited a time course of uptake that was linear for 15-30 sec and approached equilibrium by 300 sec. 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed Michaelis-Menten kinetics for carrier transport (Km = 32.3 +/- 10.8 microM; Jmax = 20.7 +/- 2.6 pmol/mg protein x sec). This carrier transport was stimulated by the addition of 1 mM ATP (Km = 35.89 +/- 10.58 microM; Jmax = 31.94+/-3.72 pmol/mg protein/sec) and replaced by an apparent slow diffusional process by the simultaneous presence of 1 mM ATP+250 microM vanadate. Thapsigargin (10 microM) was also a significant inhibitor of zinc influx (Km = 72.87 +/- 42.75 microM; Jmax =22.86 +/- 4.03 pmol/mg protein/sec), but not as effective in this regard as was vanadate. Using Dixon analysis, cadmium and copper were shown to be competitive inhibitors of lysosomal membrane vesicle 65Zn2+ influx by the ATP-dependent transport process (cadmium Ki = 68.1 +/- 3.2 microM; copper Ki = 32.7 +/- 1.9 microM). In the absence of ATP, an outwardly directed H+ gradient stimulated 65Zn2+ uptake, while a proton gradient in the opposite direction inhibited metal influx. The present investigation showed that 65Zn2+ was transported by hepatopancreatic lysosomal vesicles by ATP-dependent, vanadate-, thapsigargin-, and divalent cation-inhibited, carrier processes that illustrated Michaelis-Menten influx kinetics and was stimulated by an outwardly directed proton gradient. These transport properties as a whole suggest that this transporter may be a lysosomal isoform of the ER Sarco-Endoplasmic Reticulum Calcium ATPase.  相似文献   

10.
Lysosomal enzymes from Dictyostelium discoideum contain unusual sulfated N-linked oligosaccharides, whose synthesis has been well studied in vivo. However, little is known about the properties of the pertinent sulfotransferases. To study these transferases, we have prepared a cell-free system which transfers 35SO4 from 3'-phosphoadenosine 5'-phosphosulfate to either endogenous or exogenous acceptors. We found that the 35SO4 was released from macromolecules by protein N-glycanase F to yield a mixture of anionic oligosaccharides with 1-6 negative charges. Some of the labeled molecules contained acid-stable methyl phosphodiesters but none contained phosphomoesters or acid-labile diesters. The sulfate was found in molecules with the acid stability characteristic of esters of primary alcohols. In all these ways, the products resembled those generated in vivo. We also demonstrated that a membrane-associated form of beta-hexosaminidase and the precursor of alpha-mannosidase were among the products. In addition, glycoproteins prepared from a sulfation-deficient mutant strain could act as exogenous acceptors in permeabilized vesicles.  相似文献   

11.
《The Journal of cell biology》1988,107(6):2491-2501
The intracellular distributions of the cation-independent mannose 6- phosphate receptor (MPR) and a 120-kD lysosomal membrane glycoprotein (lgp120) were studied in rat hepatoma cells. Using quantitative immunogold cytochemistry we found 10% of the cell's MPR located at the cell surface. In contrast, lgp120 was not detectable at the plasma membrane. Intracellularly, MPR mainly occurred in the trans-Golgi reticulum (TGR) and endosomes. lgp120, on the other hand, was confined to endosomes and lysosomes. MPR was present in both endosomal tubules and vacuoles, whereas lgp120 was confined to the endosomal vacuoles. In cells incubated for 5-60 min with the endocytic tracer cationized ferritin, four categories of endocytic vacuoles could be discerned, i.e., vacuoles designated MPR+/lgp120-, MPR+/lgp120+, MPR-/lgp120+, and vacuoles nonimmunolabeled for MPR and lgp120. Tracer first reached MPR+/lgp120-, then MPR+/lgp120+, and finally MPR-/lgp120+ vacuoles, which are assumed to represent lysosomes. To study the kinetics of appearance of endocytic tracers in MPR-and/or lgp120-containing pools in greater detail, cells were allowed to endocytose horse-radish peroxidase (HRP) for 5-90 min. The reduction in detectability of MPR and lgp120 antigenicity on Western blots, due to treatment of cell homogenates with 3'3-diaminobenzidine, was followed in time. We found that HRP reached the entire accessible pool of MPR almost immediately after internalization of the tracer, while prolonged periods of time were required for HRP to maximally access lgp120. The combined data suggest that MPR+/lgp120+ vacuoles are endocytic vacuoles, intermediate between MPR+/lgp120-endosomes and MPR-/lgp120+ lysosomes, and represent the site where MPR is sorted from lgp120 destined for lysosomes. We propose that MPR is sorted from lgp120 by selective lateral distribution of the receptor into the tubules of this compartment, resulting in the retention of lgp120 in the vacuoles and the net transport of lgp120 to lysosomes.  相似文献   

12.
13.
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized principally by oculocutaneous albinism, a bleeding tendency, and a ceroid-lipofuscin lysosomal storage disease. These clinical manifestations of HPS are associated with defects of multiple cytoplasmic organelles--melanosomes, platelet granules, and lysosomes--suggesting that the HPS gene product is involved in some shared feature of the biogenesis or functions of these diverse organelles. The HPS gene has been cloned, and a number of pathologic mutations of the gene have been identified. Functional studies indicate that the HPS protein is part of a high-molecular weight complex involved in the biogenesis of early melanosomes. Additional disorders with similarities to HPS have been identified in man, mouse, flies, and yeast, and it is rapidly becoming clear that understanding these disorders will shed new light on the mechanisms by which cells traffic newly synthesized proteins through the cytoplasm to assemble functional organelles.  相似文献   

14.
The cell biology of Hermansky-Pudlak syndrome: recent advances   总被引:3,自引:0,他引:3  
Hermansky-Pudlak syndrome (HPS) defines a group of at least seven autosomal recessive disorders characterized by albinism and prolonged bleeding. These manifestations arise from defects in the biogenesis of lysosome-related organelles, including melanosomes and platelet dense granules. Most genes associated with HPS in humans and rodent models of the disease encode components of multisubunit protein complexes that are expressed ubiquitously and play roles in intracellular protein trafficking and/or organelle distribution. A small GTPase of the Rab family, Rab38, is also implicated in the pathogenesis of the disease. This article reviews recent progress toward elucidating the cellular functions of these proteins.  相似文献   

15.
16.
Lysosomal membrane vesicles isolated from rat liver were exploited to analyze the mechanism of glucose transport across the lysosomal membrane. Uptake kinetics of [14C]D-glucose showed a concentration-dependent saturable process, typical of carrier-mediated facilitated transport, with a Kt of about 75 mM. Uptake was unaffected by Na+ and K+ ions, membrane potentials, and proton gradients but showed an acidic pH optimum. Lowering the pH from 7.4 to 5.5 had no effect on the affinity of the carrier for the substrate but increased the maximum rate of transport about 3-fold. As inferred from the linearity of Scatchard plots, a single transport mechanism could account for the uptake of glucose under all conditions tested. As indicated by the transstimulation properties of the carrier, other neutral monohexoses, including D-galactose, D-mannose, D- and L-fucose were transported by this carrier. The transport rates and affinities of these sugars, measured by the use of their radiolabeled counterparts, were in the same range as those for D-glucose. Pentoses, sialic acid, and other acidic monosaccharides including their lactones, aminosugars, N-acetyl-hexosamines, and most L-stereoisomers, particularly those not present in mammalian tissues, were not transported by this carrier. Glucose uptake and transstimulation were inhibited by cytochalasin B and phloretin. The biochemical properties of this transporter differentiate it from other well-characterized lysosomal sugar carriers, including those for sialic acid and N-acetylhexosamines. The acidic pH optimum of this glucose transporter is a unique feature not shared with any other known glucose carrier and is consistent with its lysosomal origin.  相似文献   

17.
In the mouse, at least 16 genes regulate vesicle trafficking to specialized lysosome-related organelles, including platelet dense granules and melanosomes. Fourteen of these genes have been identified by positional cloning. All 16 mouse mutants are models for the genetically heterogeneous human disease, Hermansky-Pudlak Syndrome (HPS). Five HPS genes encode known vesicle trafficking proteins. Nine genes are novel, are found only in higher eukaryotes and encode members of three protein complexes termed BLOCs (Biogenesis of Lysosome-related Organelles Complexes). Mutations in murine HPS genes, which encode protein co-members of BLOCs, produce essentially identical phenotypes. In addition to their well-known effects on pigmentation, platelet function and lysosome secretion, HPS genes control a wide range of physiological processes including immune recognition, neuronal functions and lung surfactant trafficking. Studies of the molecular functions of HPS proteins will reveal important details of vesicle trafficking and may lead to therapies for HPS.  相似文献   

18.
Hermansky-Pudlak syndrome: vesicle formation from yeast to man   总被引:12,自引:0,他引:12  
The disorders known as Hermansky-Pudlak syndrome (HPS) are a group of genetic diseases resulting from abnormal formation of intracellular vesicles. In HPS, dysfunction of melanosomes results in oculocutaneous albinism, and absence of platelet dense bodies causes a bleeding diathesis. In addition, some HPS patients suffer granulomatous colitis or fatal pulmonary fibrosis, perhaps due to mistrafficking of a subset of lysosomes. The impaired function of specific organelles indicates that the causative genes encode proteins operative in the formation of certain vesicles. Four such genes, HPS1, ADTB3A, HPS3, and HPS4, are associated with the four known subtypes of HPS, i.e. HPS-1, HPS-2, HPS-3, and HPS-4. ADTB3A codes for the beta 3 A subunit of adaptor complex-3, known to assist in vesicle formation from the trans-Golgi network or late endosome. However, the functions of the HPS1, HPS3, and HPS4 gene products remain unknown. These three genes arose with the evolution of mammals and have no homologs in yeast, reflecting their specialized function. In contrast, all four known HPS-causing genes have homologs in mice, a species with 14 different models of HPS, i.e. hypopigmentation and a platelet storage pool deficiency. Pursuit of the mechanism of mammalian vesicle formation and trafficking, impaired in HPS, relies upon investigation of these mouse models as well as studies of protein complexes involved in yeast vacuole formation.  相似文献   

19.
S Hning  J Griffith  H J Geuze    W Hunziker 《The EMBO journal》1996,15(19):5230-5239
Diversion of membrane proteins from the trans-Golgi network (TGN) or the plasma membrane into the endosomal system occurs via clathrin-coated vesicles (CCVs). These sorting events may require the interaction of cytosolic domain signals with clathrin adaptor proteins (APs) at the TGN (AP-1) or the plasma membrane (AP-2). While tyrosine- and di-leucine-based signals in several proteins mediate endocytosis via cell surface CCVs, segregation into Golgi-derived CCVs has so far only been documented for the mannose 6-phosphate receptors, where it is thought to require a casein kinase II phosphorylation site adjacent to a di-leucine motif. Although recently tyrosine-based signals have also been shown to interact with the mu chain of AP-1 in vitro, it is not clear if these signals also bind intact AP-1 adaptors, nor if they can mediate sorting of proteins into AP-1 CCVs. Here we show that the cytosolic domain of the lysosomal membrane glycoprotein lamp-1 binds AP-1 and AP-2. Furthermore, lamp-1 is present in AP-1-positive vesicles and tubules in the trans-region on the Golgi complex. AP-1 binding as well as localization to AP-1 CCVs require the presence of the functional tyrosine-based lysosomal targeting signal of lamp-1. These results indicate that lamp-1 can exit the TGN in CCVs and that tyrosine signals can mediate these sorting events.  相似文献   

20.
Crude chromaffin secretory vesicles, obtained by differential centrifugation, were further purified on isotonic (Percoll) gradients. The chromaffin vesicle fractions recovered from the gradients contain acetylcholinesterase as well as lysosomal enzymes. With the aid of a subsequent sucrose gradient lysosomal enzymes could be removed from chromaffin vesicle fractions, but not acetylcholinesterase. This suggests that lysosomal enzymes do not pass through the chromaffin vesicles during the biogenesis of lysosomes but acetylcholinesterase does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号