首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon storage, especially in soils, often exceeds that of other terrestrial ecosystems. More than half of the coastal wetlands in the US are located in the northern Gulf of Mexico, yet these wetlands continue to be degraded at an alarming rate, resulting in a significant loss of stored carbon and reduction in capacity for carbon sequestration. We provide estimates of surface soil carbon densities for wetlands in the northern Gulf of Mexico coastal region, calculated from field measurements of bulk density and soil carbon content in the upper 10–15 cm of soil. We combined these estimates with soil accretion rates derived from the literature and wetland area estimates to calculate surface soil carbon pools and accumulation rates. Wetlands in the northern Gulf of Mexico coastal region potentially store 34–47 Mg C ha?1 and could potentially accumulate 11,517 Gg C year?1. These estimates provide important information that can be used to incorporate the value of wetlands in the northern Gulf of Mexico coastal region in future wetland management decisions related to global climate change. Estimates of carbon sequestration potential should be considered along with estimates of other ecosystem services provided by wetlands in the northern Gulf of Mexico coastal region to strengthen and enhance the conservation, sustainable management, and restoration of these important natural resources.  相似文献   

2.
Land-cover classification analysis using Landsat satellite imagery acquired between 1984 and 2017 quantified short- (post-Hurricane Sandy) and long-term wetland-change trends along the Maryland and Virginia coasts between Metompkin Bay, VA and Ocean City, MD. Although there are limited options for upland migration of wetlands in the study area, regression analysis showed that wetland area increased slightly between 1984 and 2011, indicating that marsh aggradation rates were sufficient to maintain wetland elevation relative to mean sea level. Following Hurricane Irene (August 2011), the Halloween Nor’Easter (October 2011), and Hurricane Sandy (October 2012), wetland area decreased by more than 7 km2 compared with average pre-storm extents. We assume that Hurricane Sandy had the greatest impact due to the size and intensity of the storm. However, the cumulative effects of multiple storms within a short time period likely contributed to the greater observed losses in coastal wetlands relative to earlier periods. Five years after Hurricane Sandy, wetland area had not significantly recovered, but more time may be necessary to assess if the observed wetland losses will persist or if new growth within flooded marsh areas will be sufficient for the wetlands to recover to pre-storm extents. Comparisons of long-term and storm-driven wetland changes can lead to improved accuracy of habitat vulnerability models and greater understanding of potential impacts of future storms and SLR to coastal wetlands.  相似文献   

3.
Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25 ppt) to 10 °C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 °C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7 ppt cultures acclimated to each temperature and then transferred to 3.5 ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30 days (3.5 ppt, 2 °C: 0% viability), 60 days (3.5 ppt, 10 °C: 0% viability) and 90 days (7 ppt, 2 °C: 0.6 ± 0.7%; 7 ppt, 10 °C: 0.2 ± 0.2%).  相似文献   

4.
Healthy wetlands play a significant role in climate change mitigation by storing carbon that would otherwise contribute to global warming, leading to the reduction of water and food resources as well as more extreme weather phenomena. Investigating the magnitude of carbon storage potential of different freshwater wetland systems using multiple ecological indicators at varying spatial scales provides insight and justification for selective wetland restoration and conservation initiatives. We provide a holistic accounting of total carbon values for 193 wetland sites, integrating existing carbon algorithms to rapidly assess each of the following carbon pools: above-ground, below-ground, soil, woody debris, shrub cover, and herbaceous cover. Aspects of soil, vegetation, and ecosystem characteristics and stressors were measured to obtain an overall understanding of the ecosystems ability to store carbon (long-term) along a gradient of human disturbance. Based on a review of the literature, methods were prioritized based on the initial data available from field measurements as well as their practicality and ease in replicating the process in the future. Lacustrine human impounded (88.7?±?18.0 tC/ha), riverine beaver impounded (116.2?±?29.4 tC/ha), riverine upper perennial (163.3?±?11.8 tC/ha), riverine lower perennial (199.2?±?24.7 tC/ha), riverine headwater complex (159.5?±?22.2 tC/ha), perennial/seasonal depression (269.6?±?42.4 tC/ha), and slope (162.2?±?14.6 tC/ha) wetland types were compared. Overall results showed moderate variability (9.33–835.95 tC/ha) for total carbon storage values across the wetland types, with an average total carbon storage of 174.6?±?8.8 tC/ha for all wetlands. Results show that carbon storage was significantly higher (p?=?0.002) in least disturbed wetland sites. Apart from perennial/seasonal depression wetlands, all reference standard wetlands had greater carbon storage, less disturbance impact, and a greater extent of forest cover than non-reference wetlands. Carbon storage values calculated were comparable to published literature.  相似文献   

5.
Tropical coastal wetlands form complex and dynamic ecosystems based on a mixture of vegetation, soil, and water components. Optical remotely sensed data have often been used to characterize and monitor these ecosystems, which are among the environments most threatened by climate change and anthropogenic activity worldwide. The present study sought to evaluate the spectral response of Landsat-5 Thematic Mapper (TM) images for the interpretation of different wetlands and associated environments at the mouth of the Amazon River, including mangroves, saltmarshes, beaches, and dunes, as well as secondary vegetation, water with different levels of sediment suspension, and human occupation. A Spectral Angle Mapper (SAM) classifier was applied to the analysis of Landsat-5 TMsatellite imagery to evaluate the potential for the mapping of these coastal wetland land cover classes. The characterization and comparison of the different spectral classes were obtained through the collection of at least 20 polygonal samples (5 × 5 pixels) for each class, with a total of 4,544 points. Spectral separability indices for each pair of classes were based on an Analysis of Variance, with Tukey post-test. The results indicated that most land cover classes could be separated spectrally with Landsat-5 TM. The overall accuracy and Kappa indices for the results of the classification were 86.1 and 0.84 %, respectively. The results of this spectral analysis demonstrated the potential of the SAM classifier for the classification of the different tropical wetlands in a typical Amazon coastal setting from optical remotely sensed data.  相似文献   

6.
In western Mexico, gray mouse opossums Tlacuatzin canescens typically are not only in tropical deciduous and semideciduous woodlands but also in croplands and orchards. We conducted mark-recapture studies in January 2003–2007 and 2010 in coastal, northern, and central Colima, Mexico. Each year, five grids, established in areas of thick vegetation within a mosaic of habitats, had 100 stations (10?×?10), each with two Sherman traps, one on the ground and another elevated 1–2 m. On 24 of 30 grids, 82 individuals were captured 126 times (85.7 % in elevated traps). Sex ratio did not deviate from 1:1; there was no sexual dimorphism in mass (average for males, 28.21 g; average for females, 25.64 g); 46.3 % of animals were adults, 27.3 % of adult females were reproductively active, and 77.5 % of males had scrotal testes. Distance from centroid of trap locations averaged 15.24 m, with mean minimum distance moved between captures being 33.19 m. Densities usually were low (0.67–8.03/ha), with the species widespread in habitats studied. We assessed 14 environmental characteristics for each station using ANOVA, logistic regression, and nonparametric multiplicative regression (NPMR) to characterize habitat selection. T. canescens was more likely found where percent grass was about 30 % and litter over 50 %, with height of canopy less than 10 m and about 40 % closed. NPMR, being able to recognize hump-shaped response curves where intermediate variable values are preferred, identified two variables (percent grass and percent canopy closed) not detected by other techniques as important in characterizing habitat selection of T. canescens.  相似文献   

7.
Alien plants from psammophilous ecosystems have been studied in southern Spain. Sixteen sites, which are included in the Andalusian Network of Protected Spaces, have been chosen along 1100 km of Andalusian coasts in order to verify the degree of abundance and influence of these species on different communities. Out of the 26 localized species, the increase of some invasive plants, such as Arctotheca calendula, Agave americana, A. sisalana, Cortaderia selloana, Lantana camara and Opuntia dillenii, affects the conservation of some natural coastal ecosystems.  相似文献   

8.
In the Mississippi River Delta, the common wetland grass, Phragmites australis, displays high genetic diversity, as several genetically distinct populations are co-occurring. Differences in salinity tolerance may be an important factor determining these populations’ distribution in the delta. Our study investigated the salt tolerance of four genotypes exposed to 0, 10, 20, 30, and 40 ppt salinity. The growth rate, biomass, and the light-saturated photosynthetic rate were stimulated at 10 ppt salinity and inhibited at salinities higher than 20 ppt, compared to controls. Increased concentrations of Cl? and Na+ were found in the roots and older leaves of plants exposed to high salinities. Salt tolerance levels differed between genotypes. High salinity tolerance was mainly achieved by reduced water uptake and vacuole compartmentalization of toxic ions. The most tolerant genotype sustained biomass and photosynthesis even at 40 ppt, whereas the most sensitive genotype did not survive salinities higher than 20 ppt. Our findings show that the observed occurrence of different genotypes in the Mississippi River Delta is correlated to genetically determined differences in salinity tolerance. Further investigations are needed to better understand the role that salinity tolerance plays in the invasion of certain introduced P. australis genotypes.  相似文献   

9.

Background and aims

Wetlands are important carbon sinks across the planet. However, soil carbon sequestration in tropical freshwater wetlands has been studied less than its counterpart in temperate wetlands. We compared carbon stocks and carbon sequestration in freshwater wetlands with various geomorphic features (estuarine, perilacustrine and depressional) and various plant communities (marshes and swamps) on the tropical coastal plain of the Gulf of Mexico in the state of Veracruz, Mexico. These swamps are dominated by Ficus insipida, Pachira aquatic and Annona glabra and the marshes by Typha domingensis, Thalia geniculata, Cyperus giganteus, and Pontederia sagittata.

Methods

The soil carbon concentration and bulk density were measured every 2 cm along 80 cm soil profiles in five swamps and five marshes. Short-term sediment accretion rates were measured during a year using horizontal makers in three of the five swamps and marshes, the carbon sequestration was calculated using the accretion rates, and the bulk density and the percentage of organic carbon in the surficial layer was measured.

Results

The average carbon concentration ranged from 50 to 150 gC kg?1 in the marshes and 50 to 225 gC kg?1 in the swamps. When the wetlands were grouped according to their geomorphic features, no significant differences in the carbon stock (P?=?0.095) were found (estuarine (25.50?±?2.26 kgC m?2), perilacustrine (28.33?±?2.74 kgC m?2) and depressional wetlands (34.93?±?4.56 kgC m?2)). However, the carbon stock was significantly higher (P?=?0.030) in the swamps (34.96?±?1.3 kgC m?2) than in the marshes (25.85?±?1.19 kgC m?2). The average sediment accretion rates were 1.55?±?0.09 cm yr?1 in the swamps and 0.84?±?0.02 cm yr?1 in the marshes with significant differences (P?=?0.040). The rate of carbon sequestration was higher (P?=?0.001) in swamp soils (0.92?±?0.12 kgC m?2 yr?1) than marsh soils (0.31?±?0.08 kgC m?2 yr?1). Differences in the rates of carbon sequestration associated with geomorphic features were found between the swamp ecosystems (P?<?0.05); i.e., higher values were found in the swamps than in the marshes in perilacustrine and estuarine wetlands (P?<?0.05). However, no significant differences (P?=?0.324) in carbon sequestration rates were found between the marsh and swamp areas of the depressional site.

Conclusions

Swamp soils are more important contributors to the carbon stock and sequestration than are marsh soils, resulting in a reduction in global warming, which suggests that the plant community is an important factor that needs to be considered in global carbon budgets and projects of restoration and conservation of wetlands.  相似文献   

10.
Great Lakes coastal wetlands provide important spawning and nursery habitat as well as abundant food resources for yellow perch (Perca flavescens). We examined multiple years of fyke-net data from wetlands along Lakes Huron and Michigan to describe yellow perch distribution in drowned river mouth (DRM) and coastal fringing systems. Principal components analysis and multi-response permutation procedures indicated that DRM wetlands (yellow perch CPUE = 0.2) were eutrophic systems that often exhibit high temperatures and periods of hypoxia, whereas coastal fringing wetlands (yellow perch CPUE = 32.1) were less productive. Among the coastal fringing systems, Saginaw Bay (Lake Huron), displayed characteristics of being more productive and had more yellow perch. Most yellow perch captured in Saginaw Bay were age-0, suggesting that it was an important nursery habitat. Among DRM ecosystems, we found that the downstream lake macrohabitats contained more yellow perch than upstream wetlands; however, there was no significant difference in abiotic characteristics to explain the higher catches in lakes. We hypothesize that yellow perch were more prevalent in wetlands with intermediate productivity during summer because these systems provide abundant food resources without the harsh conditions associated with highly eutrophic wetlands.  相似文献   

11.
Exposed sandy coasts are predominantly physically controlled environments where benthic communities are structured by the independent response of species to the physical environment, with minimal biological interactions (swash exclusion hypothesis). This prevalence of physical control may be regarded as a typical property of exposed coastal areas. In an offshore direction, the importance of wave effects on the benthos will diminish until a depth is reached where they are no longer significant [wave exclusion hypothesis (WEH)]. This loss of a coastal property may be used to define an offshore depth limit of the coastal zone. We used a large set of benthos data from the SE North Sea to test whether an offshore limit of the coast can be clearly recognised despite strong small-scale variability and how this limit would vary seasonally and from year to year. In accordance with WEH, both species density and total abundance of macrobenthos were low in the surf zone, strongly increased with depth, and averaged over all sampling dates became relatively constant below 30 m depth. Seasonally, these gradients were weaker during summer recruitment than during autumn. Species richness, by contrast, showed no significant difference with depth. In single years, the depth of the turning point from increasing abundances to constant abundances varied between 20 and 31 m (equivalent to 40–80 km off the coastline) depending on wave height. We conclude that this zone can be derived from benthic community gradients.  相似文献   

12.
Wetlands are ecosystems commonly characterized by elevated levels of dissolved organic carbon (DOC), and although they cover a surface area less than 2 % worldwide, they are an important carbon source representing an estimated 15 % of global annual DOC flux to the oceans. Because of their unique hydrological characteristics, fire can be an important ecological driver in pulsed wetland systems. Consequently, wetlands may be important sources not only of DOC but also of products derived from biomass burning, such as dissolved black carbon (DBC). However, the biogeochemistry of DBC in wetlands has not been studied in detail. The objective of this study is to determine the environmental dynamics of DBC in different fire-impacted wetlands. An intensive, 2-year spatial and temporal dynamics study of DBC in a coastal wetland, the Everglades (Florida) system, as well as one-time sampling surveys for the other two inland wetlands, Okavango Delta (Botswana) and the Pantanal (Brazil), were reported. Our data reveal that DBC dynamics are strongly coupled with the DOC dynamics regardless of location, season or recent fire history. The statistically significant linear regression between DOC and DBC was applied to estimate DBC fluxes to the coastal zone through two main riverine DOC export routes in the Everglades ecosystem. The presence of significant amounts of DBC in these three fire-impacted ecosystems suggests that sub-tropical wetlands could represent an important continental-ocean carrier of combustion products from biomass burning. The discrimination of DBC molecular structure (i.e. aromaticity) between coastal and terrestrial samples, and between samples collected in wet and dry season, suggests that spatially-significant variation in DBC source strength and/or degree of degradation may also influence DBC dynamics.  相似文献   

13.
In recent decades, wetlands have been constructed or restored around the Baltic sea to counteract the eutrophication of its coastal waters. Some of these wetlands could also be suitable spawning and nursery areas for anadromous northern pike (Esox lucius L.). We studied juvenile pike production in three coastal wetlands along the south-eastern coast of Sweden that were restored in different ways. Where terrestrial vegetation was temporarily flooded, pike larval/juvenile emigration increased from a few thousand individuals before restoration to over a hundred thousand afterwards. We suggest that vegetation was the key to this successful reproduction, as wetlands where vegetation was removed or reduced saw no similar increase in pike production. Flooded vegetation in shallow waters offers optimal spawning conditions, increased food resources, and refuge from predation. The growth and emigration of larvae and juveniles were followed over time, revealing that 80–95% of individuals left the wetlands within 1 month (at a size <6 cm). This emigration probably represents an adaption to seasonally decreasing water levels but may also be a way to avoid cannibalism.  相似文献   

14.
Carbon sequestration in freshwater wetlands in Costa Rica and Botswana   总被引:1,自引:0,他引:1  
Tropical wetlands are typically productive ecosystems that can introduce large amounts of carbon into the soil. However, high temperatures and seasonal water availability can hinder the ability of wetland soils to sequester carbon efficiently. We determined the carbon sequestration rate of 12 wetland communities in four different tropical wetlands—an isolated depressional wetland in a rainforest, and a slow flowing rainforest swamp, a riverine flow-through wetland with a marked wet and dry season, a seasonal floodplain of an inland delta—with the intention of finding conditions that favor soil carbon accumulation in tropical wetlands. Triplicate soil cores were extracted in these communities and analyzed for total carbon content to determine the wetland soil carbon pool. We found that the humid tropic wetlands had greater carbon content (P ≤ 0.05) than the tropical dry ones (96.5 and 34.8 g C kg?1, respectively). While the dry tropic wetlands had similar sequestration rates (63 ± 10 g Cm?2 y?1 on average), the humid tropic ones differed significantly (P < 0.001), with high rates in a slow-flowing slough (306 ± 77 g Cm?2 y?1) and low rates in a tropical rain forest depressional wetland (84 ± 23 g Cm?2 y?1). The carbon accumulating in all of these wetlands was mostly organic (92–100%). These results suggest the importance of differentiating between types of wetland communities and their hydrology when estimating overall rates at which tropical wetlands sequester carbon, and the need to include tropical wetland carbon sequestration in global carbon budgets.  相似文献   

15.
Land use and land cover change has a marked affect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic variables. To assess wetland condition, we have developed a Florida wetland condition index (FWCI) composed of indicators of community structure in the diatom, macrophyte, and macroinvertebrate assemblages for 216 wetlands (n = 74 depressional marsh, n = 118 depressional forested, n = 24 flowing water forested wetlands). Depressional wetlands located along a human disturbance gradient throughout Florida were sampled for each assemblage. Forested flowing water wetlands were sampled for macrophytes only. The landscape development intensity index (LDI) was used to quantify the human disturbance gradient. In general, human disturbance in adjacent areas had the greatest impact on depressional herbaceous wetlands, followed by depressional forested wetlands. Forested flowing water wetlands (i.e., forested strands and floodplain wetlands) were less affected by local conditions, with most of their changes in wetland condition correlated with alterations at the larger watershed scale. Strong correlations between the FWCIs and LDI index scores suggest that changes in community structure can be detected along a gradient of human land use activities adjacent to wetland ecosystems.  相似文献   

16.
Eelgrass (Zostera marina) population estimates show a decreasing trend worldwide in the second half of the twentieth century. Mexico lacks long-term time series to determine trends for major eelgrass populations and has made no conservation efforts. Therefore, we present the first report on the historic presence of this annual coastal ecosystem in two wetlands of the Gulf of California (GC), the Infiernillo Channel (CIF, largest Z. marina population inside GC) and Concepcion Bay (BCP, the only eelgrass population along GC’s west coast), combining field surveys (1999–2010), aerial photography (2000–2010), satellite imagery (1972–2005), and published reports (1994–2007). Three parameters were used as indicators of conservation status: shoot density, seed banks, and aerial coverage. Average shoot density in the CIF (741 shoots m?2) was 3.8 times higher than in BCP (194 shoots m?2), and average seed bank density was similar in both wetlands (17,442 seeds m?2 vs. 17,000 seeds m?2). Opportunistic seagrass Ruppia maritima was observed in both wetlands, with higher abundance in summer when Z. marina disappears due to high water temperatures. Eelgrass coverage was three orders of magnitude greater in the CIF (9725 ha) than in BCP (3 ha). The striking difference between these wetlands is the lack of environmental protection for BCP and the protection of the CIF by the Seri indigenous community, which increases human pressure in the former, putting it at high risk of disappearing. Conservation of eelgrass meadows is not only necessary to preserve their ecosystem services but to insure the survival of migratory populations (Pacific brant goose, Branta bernicla), endangered species (Black turtle, Chelonia mydas), and fisheries-related species.  相似文献   

17.
The aim of the present work was to study the effects of photoperiod, salinity and pH on growth and lipid content of Pavlova lutheri microalgae for biodiesel production in small-scale and large-scale open-pond tanks. In a 250-mL flask, the cultures grew well under 24 h illumination with maximum specific growth rate, μ max , of 0.12 day?1 and lipid content of 35 % as compared to 0.1 day?1 and 15 % lipid content in the dark. The salinity was optimum for the cell growth at 30–35 ppt, but the lipid content of 34–36 % was higher at 35–40 ppt. Algal growth and lipid accumulation was optimum at pH 8–9. Large-scale cultivation in 5-L and 30-L tanks achieved μ max of 0.13–0.14 day?1 as compared to 0.12 day?1 in small-scale and 300L cultures.  相似文献   

18.
Water samples were collected from three selected mangrove ecosystems of Kali Estuary west coast Karwar, on monthly basis and analyzed for various hydrographic parameters. The present work would give the recent information on the hydrographic condition of the mangrove ecosystem of Kali estuary. Surface water temperature varied from 27.4 to 32.07 °C and the salinity ranged between 4.1 and 30.15 ppt, pH ranged between 7.00 and 8.89. Variation in dissolved oxygen content was from 2.46 to 6.47 ml/l and suspended matter ranged between 0.03 and 1.05 gm/l. Concentrations of nutrients viz. phosphates (0.71–2.38 μg at/l), nitrates (0.73–2.42 μg at/l), nitrites (0.07–0.98 μg at/l) and silicate (131.18–298.18 μg at/l) also varied independently. The results of the study revealed that hydrographical conditions fluctuated moderately throughout the year.  相似文献   

19.
Seasonally flooded, freshwater cypress-tupelo wetlands, dominated by baldcypress (Taxodium distictum), water tupelo (Nyssa aquatica), and swamp tupelo (Nyssa sylvatica var. biflora) are commonly found in coastal regions of the southeastern United States. These wetlands are threatened due to climate change, sea level rise, and coastal urban development. Understanding the natural biogeochemical cycles of nutrients in these forested wetlands as ecosystems services such as carbon sequestration and nitrogen processing can provide important benchmarks to guide conservation plans and restoration goals. In this study, surface water and soil pore water samples were collected weekly from a cypress-tupelo wetland near Winyah Bay, South Carolina and analyzed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), inorganic nitrogen, and phosphate during its flooding period between October 2010 and May 2011. DOC was further characterized by specific ultra-violet absorbance at 254 nm, spectral slope ratio (SR) (ratio of two spectral slopes between 275–295 nm and 350–400 nm), E2/E3 ratio (ratio between A254 and A365), and fluorescence excitation-emission matrix. In addition, litterfall was collected on a monthly basis for a year while the biomass of the detritus layer (i.e., decomposed duff lying on the wetland floor) was determined before and after the flooding period. Results of the field study showed that concentrations of DOC, DON, NH4 +–N, and (NO2 ? + NO3 ?)–N in the surface water were generally higher during the fall, or peak litterfall season (October to December), than in the spring season (March to May). Highest concentrations of 54.8, 1.48, 0.270, and 0.0205 mg L?1, for DOC, DON, NH4 +–N, and (NO2 ? + NO3 ?)–N respectively, in surface waters were recorded during October. Lower SUVA, but higher SR and E2/E3 ratios of DOC, were observed at the end of the flooding season comparing to the initial flooding, suggesting the wetland system converts high aromatic and large DOC molecules into smaller and hydrophilic fractions possibly through photochemical oxidation. A similar trend was observed in soil pore water, but the pore water generally had greater and relatively stable concentrations of dissolved nutrients than surface water. No obvious temporal trend in phosphate concentration and total nitrogen to total phosphorus ratio (N:P) were found. Results of the laboratory extraction and mass balance calculation suggested fresh litter was a major source of DOC whereas decomposed duff was the source of dissolved nitrogen in surface water. In summary, the biogeochemistry of this isolated cypress-tupelo wetland is not only driven by the vegetation within the wetland system but also by hydrology and weather conditions such as groundwater table position, precipitation, and temperature.  相似文献   

20.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号