首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benthic community metabolism was studied on four stream systems located in different biomes in the United States: the eastern deciduous forest (Pennsylvania, PA, and Michigan, MI), the high desert (Idaho, ID), and the coniferous forest (Oregon, OR). Studies were designed to test the hypothesis advanced within the River Continuum Concept that a transition in community metabolism will occur from a predominance of heterotrophy in headwaters to a predominance of autotrophy in mid-sized reaches, with a return to heterotrophy further downstream. Both gross primary productivity (GPP) and community respiration (CR24) increased with downstream direction on all systems. Net daily metabolism (NDM, or GPP – CR24) shifted from heterotrophy (–NDM, GPP < CR24) to autotrophy (+NDM, GPP > CR24) with downstream direction at all sites, supporting the hypothesis. Annual metabolism in the most upstream reach of all sites was dominated by respiration; however, the farthest downstream reach was not necessarily the most autotrophic. Site-specific factors affected manifestation of the trend. Photosynthesis predominated annual metabolism in reaches (designated 1–4 in order of increasing size) 2–4 in ID, 3 and 4 in OR, and 4 in MI. In PA annual photosynthesis was slightly greater than respiration only at Station 3. Photosynthesis was predominant most consistently in ID and respiration most often in PA. About half the reaches that were heterotrophic annually were autotrophic at one or more seasons. Annual means of benthic GPP, CR24 and NDM ranged from 0.16 to 3.37, 0.36 to 2.88 and –0.73 to 0.50 g O2 · m2 · d1, respectively. Metabolic rates were usually high in PA and MI (and sometimes ID) and almost always lowest in OR. Parameters accounting for most variance in multiple linear regression analyses of the combined metabolism data from all sites were indicators of stream size, photosynthetically active radiation, temperature, and chlorophyll a concentration.  相似文献   

2.
We studied the transport of particulate organic carbon (POC) and dissolved organic carbon (DOC) in two regulated rivers during minimum and increasing discharges. Mean annual concentrations of total POC, measured monthly during conditions of minimum discharge from the dams, were twice as high at a station below a dam with a selective withdrawal system on the Kootenai River (KR, 0.15 mg 1–1), as at station below a dam with hypolimnetic water releases on the Flathead River (FR, 0.07 mg 1–1). Annual mean concentrations of DOC were similar below both dams (1.62 mg 1–1 FR; 1.71 KR). The percentage of POC in four size fractions differed in regulated and unregulated reaches of each river system; the smallest size fraction (0.45–10 smm) constituted a larger percentage of the total POC at the stations below the dams (50–93%), because POC in large size classes had settled out in the reservoir. The three largest size fractions (10–1000 µm) comprised a larger percentage of the total POC when samples were taken during conditions of full discharge from the dam. We measured large increases in all size classes of POC in samples collected during increasing discharges in a regulated reach, reflecting the component of sloughed periphyton and resuspended organic matter that were added during periods of hydropower generation at the dam. Seston (355 µm to 1 cm) collected in nets increased dramatically during increasing flows; concentrations of particulate organic matter (POM) in samples collected two and three hours after water levels began to rise were 572 and 1440 times higher than those collected during minimum discharge at the dam.  相似文献   

3.
Metabolism of a Sonoran Desert stream was investigated by both enclosure and whole system oxygen techniques. We used recirculating chambers to estimate surface sediment metabolism and measured deep sediment respiration in isolated sediment cores. Metabolism of the stream ecosystem was determined for a 30-m reach as dark and light oxygen change with and without black plastic sheeting that darkened the stream and prevented diffusion. Average ecosystem respiration for two dates in August (440 mg O2 m-2 h-1) exceeded respiration of either the surface sediment community (155 Mg O2 m-2 h-1) or the hyporheic community (170 mg O2 m-2 h-1) alone. Deep sediments show substantial oxygen and nitrate uptake when isolated. In the stream, this low nitrate interstitial water is exchanged with surface water. Metabolism of the isolated surface community suggests a highly productive and autotrophic system, yet gross production is balanced or exceeded by community respiration when ecosystem boundaries include the hyporheic zone. Thus, despite high rates of gross primary production (600–1200 mg O2 m-2 h-1), desert streams may be heterotrophic (PG < R) during summer.  相似文献   

4.
Whitledge  Gregory W.  Rabeni  Charles F. 《Hydrobiologia》2000,437(1-3):165-170
Benthic community metabolism was measured in three habitats (riffles, runs and pools) during spring (May), summer (July) and fall (October) in the Jacks Fork River, Missouri, using an in situ chamber technique. Net community productivity (NCP) and gross community productivity (GCP) were highest in riffles, lowest in pools and intermediate in runs. Rates of NCP and GCP during spring and fall were similar for both riffles and runs, but NCP and GCP increased significantly during summer in both habitats. Pool substrates were always heterotrophic and exhibited no significant seasonal changes in NCP or GCP. Community respiration (CR) was highest in riffles, intermediate in runs and lowest in pools, but interhabitat differences in CR were generally smaller than for NCP. Rates of CR during spring and fall were similar, but CR increased significantly during summer. Results indicate that the physical conditions associated with each habitat strongly affect benthic community metabolism in this stream and that the relative proportions of these habitats will influence the ratio of living algal:detrital organic matter potentially available for consumers.  相似文献   

5.
Photosynthesis and respiration by the epilithic community on cobble in an arctic tundra stream, were estimated from oxygen production and consumption in short-term (4–12 h), light and dark, chamber incubations. Chlorophyll a was estimated at the end of each incubation by quantitatively removing the epilithon from the cobble. Fertilization of the river with phosphate alone moderately increased epilithic chlorophyll a, photosynthesis, and respiration. Fertilization with ammonium sulfate and phosphate, together, greatly increased each of these variables. Generally, under both control and fertilized conditions, epilithic chlorophyll a concentrations (mg m−2), photosynthesis, and respiration (mg O2 m−2, h−1) were higher in pools than in riffles. Under all conditions, the P/R ratio was consistent at ∼ 1.8 to 2.0. The vigor of epilithic algae in riffles, estimated from assimilation coefficients (mg O2 [mg Chl a]−1 h−1) was greater than the vigor of epilithic algae in pools. However, due to the greater accumulation of epilithic chlorophyll a in pools, total production (and respiration) in pools exceeded that in riffles. The epilithic community removed both ammonium and nitrate from water in chambers. Epilithic material, scoured by high discharge in response to storm events and suspended in the water column, removed ammonium and may have increased nitrate concentrations in bulk river water. However, these changes were small compared to the changes exerted by attached epilithon.  相似文献   

6.
Summary 1. Primary production by Chara vulgaris and by epipelic and epilithic algal assemblages was measured in a semiarid, Mediterranean stream (Chicamo stream, Murcia, Spain) during one annual cycle. 2. The rates of gross primary production (GPP) and community respiration (CR) were determined for each algal assemblage using oxygen change in chambers. The net daily metabolism (NDM) and the GPPd?1 : CR24 ratio were estimated by patch‐weighting the assemblage‐level metabolism values. 3. Gross primary production and CR showed significant differences between assemblages and dates. The highest rates were measured in summer and spring, while December was the only month when there were no significant differences in either parameters between assemblages. GPP was strongly correlated with respiration, but not with algal biomass. 4. Chara vulgaris showed the highest mean annual metabolic rates (GPP = 2.80 ± 0.83 gC m?2 h?1, CR = 0.76 ± 0.29 gC m?2 h?1), followed by the epilithic assemblage (GPP = 1.97 ± 0.73 gC m?2 h?1, CR = 0.41 ± 0.12 gC m?2 h?1) and epipelic algae (GPP = 1.36 ± 0.22 gC m?2 h?1, CR = 0.39 ± 0.06 gC m?2 h?1). 5. The epipelic assemblage dominated in terms of biomass (82%) and areal cover (88%), compared with the other primary producers. Epipelic algae contributed 84% of gross primary production and 86% of community respiration in the stream. 6. Mean monthly air temperature was the best single predictor of macrophyte respiration and of epipelic GPP and CR. However, ammonium concentration was the best single predictor of C. vulgaris GPP, and suspended solid concentration of epilithon GPP and CR. 7. Around 70% of the variation in both mean GPP and mean CR was explained by the mean monthly air temperature alone. A multiple regression model that included conductivity, PAR and nitrates in addition to mean monthly air temperature, explained 99.99% of the variation in mean CR. 8. Throughout the year, NDM was positive (mean value 7.03 gC m?2 day?1), while the GPP : CR24 ratio was higher than 1, confirming the net autotrophy of the system.  相似文献   

7.
This study evaluates the effectiveness of community production and respiration measurements as monitoring tools for environmental impact evaluations and compares these data to community structural data.In Prickly Pear Creek, Montana, production and respiration rates were determined for periphyton communities in control, impact and recovery reaches using colonized granite substrates and sealed plexiglas chambers. Values for gross primary productivity (GPP), community respiration (CR24), ash-free dry mass (AFDM) and chlorophyll a content (Chla) were obtained for each granite slab. Of these, AFDM, Chla and CR24 were statistically significant among sites (P0.01). Although mean values for GPP appeared to differ among reaches, statistical differences could not be inferred because of large variances associated with this measure. These data indicate that inherent variability may limit the use of community function measures in routine environmental monitoring. However, production/respiration methods provide valuable data about emergent properties of aquatic communities that cannot be derived from routine population censuses.  相似文献   

8.
Uzarski  D.G.  Burton  T.M.  Stricker  C.A. 《Hydrobiologia》2001,455(1-3):137-155
We designed an open-ended community metabolism chamber to simultaneously measure surface and hyporheic metabolism. Our chamber design eliminated reaeration, compartmentalized metabolism, maintained ambient conditions and included hyporheic respiration. We compared results from our hyporheic chamber to results obtained from: (1) closed benthic community metabolism chambers constructed as recommended by Bott et al. (1978), and (2) whole-stream metabolism techniques as modified by Marzolf et al. (1994). Simultaneous comparisons of all three procedures were made for a 35 m riffle section of Augusta Creek, a 3rd-order Michigan stream, in July 1997 and repeated in July 1998. Simultaneous comparisons of all three procedures were also made for a 30 m sandy run section of Augusta Creek in September 1997, and repeated in September 1998. Our hyporheic chamber estimates for community respiration (CR24) were similar to those obtained using the whole-stream metabolism procedure but were considerably higher than estimates obtained using the closed benthic chambers in three of the four experiments. These data suggest that our chamber design provided estimates of community metabolism which included both benthic and hyporheic respiration. The chamber incorporates several positive aspects of both closed chambers and the whole-stream method. This new method can be replicated, eliminates the need for a reaeration coefficient, ambient conditions are better approximated since it remains an open system, and it appears to provide more realistic estimates of whole-stream metabolism compared to the traditional chamber approach.  相似文献   

9.
10.
The emergence of 17-year periodical cicadas in Maryland, USA, in 2004 provided a unique opportunity to study the effect of a large, but temporally limited, resource pulse of arthropod detritus on stream ecosystem function. Cicada emergence was quantified in the forests adjacent to two small streams with different histories of riparian disturbance (Intact and Disturbed sites). We estimated the input of cicada detritus to the streams, described its retention and breakdown dynamics, and measured whole-stream respiration over the cicada flight season (May–July). Average emergence density was significantly greater at the Intact site, but average cicada detritus input rates were greater at the Disturbed site. Cicada detritus was locally retained within both streams and rapidly broke down. Daily whole-stream respiration (CR24) at both sites responded dramatically to the cicada pulse, with CR24 doubling pre-cicada measurements following the period of greatest cicada input (Intact: 12.82 → 23.78 g O2 m−2 d−1; Disturbed: 2.76 → 5.77 g O2 m−2 d−1). CR24 returned to baseline levels when cicada input decreased at the Intact site, but more than doubled again at the Disturbed site (13.14 g O2 m−2 d−1), despite a decline in cicada input rate. Differences in respiration response may be a function of differences in cicada input rates as well as differences in microbial community activity. The strong effects on stream ecosystem function exerted by a short but intense input of periodical cicada detritus may provide insights regarding the response of streams to other irregular resource pulses. HM, MP, LC, and DR conceived and designed study; HM, LC, and DR performed research; HM, LC, and DR analyzed data; HM, MP, LC, and DR wrote the paper.  相似文献   

11.
Empirical data that describe the metabolic balance of stream ecosystems in human-dominated watersheds are scarce. We measured ecosystem metabolism in 23 open-canopied lowland streams draining urban and agricultural areas in the Fuji River Basin, central Japan. Gross primary production (GPP) and community respiration (CR) were estimated using the diurnal dissolved oxygen (DO) change technique, with the reaeration coefficient (K 2) determined from seven empirical depth-velocity equations. Because the predicted values of K 2 showed variation among the depth-velocity equations, the estimates of stream metabolism also varied according to the equations. However, CR was almost always greater than GPP, resulting in negative net ecosystem production (NEP) and GPP/CR ratios below unity for most of the study reaches. Highly heterotrophic streams were found in intensively farmed watersheds, suggesting that organic matter loading from agricultural lands is likely to be a source of allochthonous carbon fueling excess respiration in the study streams. In contrast, streams draining more urbanized areas were less heterotrophic. The present results suggest that lowland streams in agriculturally developed watersheds are associated strongly with terrestrial ecosystems as a source of organic carbon. The resultant strong respiration might become the dominant process in ecosystem metabolism, as reported for headwater streams, large downstream rivers, and estuaries.  相似文献   

12.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   

13.
1. The single station diel oxygen curve method was used to determine the response of system metabolism to backfilling of a flood control canal and restoration of flow through the historic river channel of the Kissimmee River, a sub‐tropical, low gradient, blackwater river in central Florida, U.S.A. Gross primary productivity (GPP), community respiration (CR), the ratio of GPP/CR (P/R) and net daily metabolism (NDM) were estimated before and after canal backfilling and restoration of continuous flow through the river channel. 2. Restoration of flow through the river channel significantly increased reaeration rates and mean dissolved oxygen (DO) concentrations from <2 mg L−1 before restoration of flow to 4.70 mg L−1 after flow was restored. 3. Annual GPP and CR rates were 0.43 g O2 m−2 day−1 and 1.61 g O2 m−2 day−1 respectively, before restoration of flow. After restoration of flow, annual GPP and CR rates increased to 3.95 O2 m−2 day−1 and 9.44 g O2 m−2 day−1 respectively. 4. The ratio of P/R (mean of monthly values) increased from 0.29 during the prerestoration period to 0.51 after flow was restored, indicating an increase in autotrophic processes in the restored river channel. NDM values became more negative after flow was restored. 5. After flow was restored, metabolism parameters were generally similar to those reported for other blackwater river systems in the southeast U.S.A. Postrestoration DO concentrations met target values derived from free flowing, minimally impacted reference streams.  相似文献   

14.
We measured the impact of riparian zone vegetation on ecosystem metabolism in paired forested and meadow reaches on 13 streams in southeastern Pennsylvania and Maryland, USA. Metabolism estimates were based on open-system measurements of dissolved oxygen changes, with reaeration determined from propane evasion. Daily gross primary productivity (GPP) in meadow and forested reaches averaged 2.85 and 0.86 g O2 m−2 d−1, respectively, at water temperatures of 12°C or greater when the forest canopy was developed and 1.74 and 1.09 g O2 m−2 d−1, respectively, at temperatures below 12°C when the canopy was bare. Community respiration (CR24) also was greater in meadow reaches than in forested reaches, averaging 5.58 and 3.57 g O2 m−2 d−1, respectively, in the warm season and 4.87 and 2.88 g O2 m−2 d−1, respectively, during the cold season. Thus, both meadow and forested reaches were heterotrophic. Forested reaches were always wider and nearly always shallower than companion meadow reaches. When ecosystem function was assessed per unit of stream length, the difference in average GPP between meadow and forested reaches was reduced from three-fold to 1.9-fold in the warm season, and mean GPP was greater in the forested reaches during the cold season. Mean CR24 per meter stream length was greater in forested reaches during both seasons. Even though riparian shading reduced primary productivity per unit area of streambed, the greater stream width of the forested reaches counteracted that reduction in part. Thus, when rates of ecosystem function were expressed per length of stream, differences between reaches were always smaller than when expressed per area, and activity per unit stream length was sometimes greater in forested reaches than in meadow reaches.  相似文献   

15.
由于荒漠生态系统植被覆盖度低、生产力低下,其在全球碳循环中的作用被长期忽视。为探讨荒漠生态系统碳收支各组分的变化规律,以腾格里荒漠红砂(Reaumuria soongorica Maxim.)-珍珠(Salsola passerina Beg.)群落为研究对象,采用静态箱式法研究了该群落的净生态系统CO2交换量(NEE)、生态系统呼吸、土壤呼吸的日变化规律,同时将该方法所获得的NEE结果与涡动相关法观测的结果进行了比较。结果表明:(1)红砂-珍珠群落NEE的日变化表现为,在6:00—9:00左右出现一个CO2吸收的高峰值,随后在12:00—15:00左右出现一个CO2释放高峰值。红砂种群、珍珠种群和整个群落NEE的平均值分别为0.018、0.020和0.028 mg CO2m-2s-1;(2)红砂种群、珍珠种群、土壤及整个群落生态系统呼吸速率的日变化规律一致,均表现为明显的单峰变化趋势,在12:00—15:00左右出现一个CO2释放的高峰值。红砂种群、珍珠种群、土壤和整个群落的生态系统呼吸的平均值分别为:0.121、0.062、0.029和0.040 mg CO2m-2s-1。以盖度为加权因子计算得到红砂种群、珍珠种群和土壤呼吸占生态系统呼吸的比例分别为:9%、21%和70%,由此可见,生态系统呼吸主要来源于土壤呼吸。(3)将箱式法和涡动相关法观测的NEE进行比较,结果表明两种方法观测的NEE变化规律基本一致,相关系数达到0.7。采用箱式法观测的NEE高于涡动相关法观测的结果,平均值分别0.028 mg CO2m-2s-1(箱式法)和0.015 mg CO2m-2s-1(涡动相关法),涡动相关法的观测结果与箱式法观测结果的比值为0.54。综上可得,荒漠生态系统土壤呼吸的变化速率决定了生态系统呼吸的变化规律,采用箱式法可能高估了荒漠生态系统CO2的释放量。  相似文献   

16.
1. Each year since 1983, H3PO4 has been added continuously during the ice-free season to a P-limited tundra river (Kuparuk River, North Slope, Alaska). Effects on epilithic metabolism, invertebrate community structure and fish production developed quickly. 2. In 1990, 7 years after fertilization began, we noted extensive coverage by bryophytes within the fertilized reach of the river, where very little had been noted before. Bryophyte biomass from a limited set of quadrats taken in 1990 and 1991 yielded 17 ± 9 (SE) g dry mass m?2 in control reaches and 322 ± 96 g dry mass m?2 in fertilized reaches. 3. An initial survey of macroalgal and bryophyte cover in 1991 suggested that the moss Schistidium (Grimmia) agassizii was distributed in both control and fertilized reaches of the river. No clear difference in coverage by this species was found in either reach. 4. In contrast, two species of Hygrohypnum (H. alpestre and H. ochraceum) were found almost exclusively in the fertilized reach. An extensive point transect survey done in 1992, above, within and below the fertilized reach, indicated that increased cover and biomass of Hygrohypnum spp. were confined to the fertilized reach of the river. Detrended correspondence analysis clearly separated the macrophyte and macroalgal communities in the fertilized reach from those in the control and downstream reaches. 5. A fourth bryophyte species (Fontinalis neomexicana) also occurred almost exclusively in the fertilized reach, but was much less abundant than the Hygrohypnum species. 6. Analysis of total N and P in the tissues of the Hygrohypnum spp., and estimates of average coverage (~15%) and biomass (~150g dry weight m?2) over an 8km fertilized reach, suggest that these species alone may have removed two-thirds of the P added in the fertilizer experiment. The bryophyte community in this river is likely to be the dominant sink for P in the fertilized reach.  相似文献   

17.
Previous studies indicated that a ganglioside 9acGD3 (9-O-acetyl GD3) antibody [the J-Ab (Jones antibody)] reduces GCP (granule cell progenitor) migration in vitro and in vivo. We here investigated, using cerebellar explants of post-natal day (P) 6 mice, the mechanism by which 9acGD3 reduces GCP migration. We found that immunoblockade of the ganglioside with the J-Ab or the lack of GD3 synthase reduced GCP in vitro migration and the frequency of Ca2+ oscillations. Immunocytochemistry and pharmacological assays indicated that GCPs expressed P2Y1Rs (P2Y1 receptors) and that deletion or blockade of these receptors decreased the migration rate of GCPs and the frequency of Ca2+ oscillations. The reduction in P2Y1-mediated calcium signals seen in Jones-treated and GD3 synthase-null GCPs were paralleled by P2Y1R internalization. We conclude that 9acGD3 controls GCP migration by influencing P2Y1R cellular distribution and function.  相似文献   

18.
Gross primary production, community respiration and reaeration coefficient were determined during an annual cycle on the Viroin River (South Belgium), based on the daily variations of dissolved oxygen concentration. Reaeration coefficient remains remarkably constant (0.26 h−1) during the year in spite of discharge variations. The autotrophic community is dominated by ‘Ranunculus fluitans’. Primary production parallels the variations of total solar radiations. It ranges from 0 in winter to 8 g O2 m−2 d−1 in summer. In spring and summer, respiration variations parallel those of primary production (average value: 10 g O2 m−2 d−1); in the dry autumn, decomposition of dying macrophytes considerably enhances the community respiration (15 g O2 m−2 d−1). A P/R diagram is used to characterize the trophic state of the Viroin.  相似文献   

19.
Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp‐broadleaved forest in New Zealand, dominated by 100–400‐year‐old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light‐saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis – whole‐plant respiration) per unit ground area at saturating irradiance was 1.9 μmol m?2 s?1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air‐dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m?2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ?1010 g m?2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ~11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate.  相似文献   

20.
1. Cladophora glomerata is the dominant filamentous green alga in the tailwaters of the Colorado River, U.S.A., below Glen Canyon Dam, but becomes co-dominant with filamentous cyanobacteria, Oscillatoria spp., below the confluence of the Paria River (26km below the dam) where suspended sediments are elevated. 2. Benthic algal assemblages played an important role in the distribution of the amphipod, Gammarus lacustris, in the dam-controlled Colorado River through Grand Canyon National Park, Arizona. Cladophara and G. lacustris showed a weak positive relationship at ten cobble-riffle habitats in the Colorado River from Lees Ferry (25km below the dam) to Diamond Creek (362km downstream), while no relationship was found between Oscillatoria and G. lacustris. 3. The relationship between algal substrata and G. lacustris was tested by a series of in situ habitat choice experiments. G. lacustris showed a significant preference for Cladophora (with epiphytes) over Oscillatoria spp., detritus and gravel in treatment pans at Lees Ferry. 4. Epiphytic diatoms (i.e. food) were the overriding determinant of subtratum choice by G. lacustris in laboratory experiments. Gammarus chose the Cladophora/epiphytic diatom community over sonicated Cladophora with few diatoms. The amphipods also chose string soaked in diatom extract over string without diatom extract. 5. Importance of mutualistic interactions in aquatic benthic community structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号