首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable effects of sediment addition on stream benthos   总被引:7,自引:7,他引:0  
Two upper Piedmont streams were studied to determine the effects of road construction, especially sediment inputs. Benthic macroinvertebrate data suggest that the stream community responded to sediment additions in two different ways. Under high flow conditions the benthic fauna occurs mainly on rocky substrates. As sediment is added to a stream the area of available rock habitat decreases, with a corresponding decrease in benthic density. There is, however, little change in community structure. Under low flow conditions, stable-sand areas may support high densities of certain taxa. Density of the benthic macroinvertebrates in these areas may be much greater than the density recorded in control areas, and there are distinct changes in community structure.  相似文献   

2.
In this study, we aim at investigating the role of physical disturbance in effects of water-based drill cuttings on benthic ecosystems. Today, most of the cuttings discharged from oil and gas installations contain water-based drilling muds, rather than oil-based or synthetic muds. Drill cuttings with water-based muds are assumed to cause only marginal effects on the benthos, mainly resulting from sedimentation. However, this statement has not been experimentally tested, which is the purpose of the present work. Natural sediment particles and water-based drill cuttings were added to benthic communities in layer thicknesses of 3-24 mm in a mesocosm set-up. During the following 6 months, changes in benthic community structure and fluxes of oxygen and nutrients across the sediment water interface were studied. There was a significant reduction in number of taxa, abundance, biomass and diversity of macrofauna with increasing thickness of drill cuttings, which was not observed for the natural sediment particles. The drill cuttings also influenced oxygen consumption and oxygen penetration depth in the sediment, and it was concluded that an organic compound in the drill cuttings initiated a typical eutrophication response. Fluxes of phosphate and silicate were, however, similarly affected by the two types of particles, and maximum fluxes occurred in sediments treated with thin layers (3-6 mm) of particles. As the response of water-based drill cuttings in the present study was a result of factors other than physical disturbance, we recommend a reconsideration of the assumption that water-based drill cuttings only cause sedimentation (burial) effects.  相似文献   

3.
环境因子对河流底栖无脊椎动物群落结构的影响   总被引:7,自引:0,他引:7  
任海庆  袁兴中  刘红  张跃伟  周上博 《生态学报》2015,35(10):3148-3156
底栖无脊椎动物是河流生态系统的重要组成部分,在物质循环和能量流动中是不可或缺的重要环节。其群落结构特点与河流环境因子密切相关,能较好地反映河流生态系统健康状况。综述了物理因子(底质、温度、水深、水流、洪水干扰等)、化学因子(溶氧量、p H值、磷、氮等)、生物因子(水生植物、竞争和捕食)、人为干扰(电站建设、城镇化等)和综合因子对河流底栖无脊椎动物群落结构的影响,并根据国内外研究现状指出水流、海拔和洪水干扰等环境因子对河流底栖无脊椎动物群落结构影响的研究较少或不足,对这些环境因子的研究应是今后河流生态学领域需要着力推进重要内容。深入研究和完善环境因子与底栖无脊椎动物群落结构的关系可为保护底栖无脊椎动物群落、流域水生态系统管理和受损河流生态系统修复提供更为全面的科学依据。  相似文献   

4.
The distribution of juvenile benthic invertebrates with respect to their abiotic environment was investigated at four locations along a gradient in Kongsfjorden (79°N, 12°E), Spitsbergen, in September 1997. Heavy discharge of inorganic sediments released by the three glaciers was expected to be one of the main structuring factors of benthic communities in the fjord. Juveniles of 76 species/families are identified. Total abundance increases with distance from the fjord head due to the dominance of opportunistic polychaetes, while diversity is highest close to the glacier. Juvenile polychaetes are the most abundant taxon over all stations (92%), followed by bivalves, crustaceans and others. Polychaetes also provide most species (55%) and are the dominant taxon at every station. Their abundance is highly correlated with total organic carbon, indicating that most of them are deposit feeders. Young crustaceans rapidly decrease towards the fjord mouth, probably due to stronger bottom currents. Even though young oligochaetes are exclusively found near the glacier, no species seem to be well adapted to the high sedimentation rate close to the glacier. Juvenile suspension-feeding bivalves seem to be less disturbed by glacial discharge but appear to be more vulnerable to currents on the more exposed sites. The importance of deposit feeders and carnivores increases towards the outer stations. Non-metric multidimensional scaling confirms the distinct gradient in community composition along the fjord. Coupling the biotic data to abiotic factors (depth, bottom-water salinity, bottom-water temperature, sediment grain size and sedimentation rate) using canonical correspondence analysis revealed that hydrographic factors are more responsible for the structuring of the benthic juvenile community at the shallow stations close to the glacier (except the station directly at the glacier). At the outer deeper stations, sediment grain size and related properties may play a more important role.  相似文献   

5.
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments.  相似文献   

6.
The relative contributions of natural and anthropogenic fluctuations are different in shaping habitat health status and natural benthic communities in tropical coastal water. Understanding responses of coastal benthic communities to these fluctuations are still equivocal and thus available data are inadequate. Here, multiple analytical approaches were used to address the significant risk factors and their impacts on coastal benthic habitat health through space and time. A total abundance of 1436 ± 612 individuals of 33 benthic species were counted and identified from 22 sampling stations across eight sampling periods over the two years of study. Bioassay results showed that the benthic community is moderately exposed to anthropogenic pollutants in Klang Strait coastal water. The results showed that there were no significant temporal changes of habitat health status and macrobenthic community structure; however, spatial changes were significant and synchronized with anthropogenic and natural fluctuations. This study demonstrates that Cd and Hg levels and sediment characteristics played the primary role in shaping the habitat health and macrobenthic assemblages, whereas the influence of other factors were insignificant.  相似文献   

7.
A forest headwater stream was manipulated (logging road-crossing amended) to induce fine sediment inputs. Benthic inorganic sediment concentrations .particles 1.5–250 μm increased from a 2-year pre-disturbance average of about 800 g m–2 to over 5000 g m–2 that persisted for 3 years. Aquatic insect communities were examined over the 5-year study period in the manipulated and nearby reference streams. Overall, the effects of the fine sediment increases on aquatic insect communities were minimal. There were no significant effects of sedimentation on total aquatic insect abundance or biomass. An index of multivariate dispersion gave no evidence of community stress at the manipulated site. Multivariate ordination plots and time trends among univariate community metrics indicated only subtle changes in community structure. Among the univariate metrics (16 time series analyses in total), six gave evidence of a sediment impact on aquatic insect communities. Of those, the clearest indications of an effect were small reductions in diversity and richness of spring communities. These resulted from a significant decline in the proportion of spring shredders, accompanied by a significant increase in the percent Chironomidae. This large-scale experimental approach integrated the realism of a whole-stream study with the control of a manipulative study by including pre-manipulation measurements and excluding other confounding catchment disturbances. In this regard, it may provide a more realistic measure of benthic community level responses to sedimentation in streams at a magnitude associated with logging activity than many previous studies.  相似文献   

8.
Benthic microalgal communities are important components of estuarine food webs and make substantial contributions to coastal materials cycling. Nitrogen is generally the limiting factor for marine primary production; however other factors can limit benthic primary producers because of their access to the additional nutrients found in sediment porewater. Field and laboratory experiments were conducted to test the hypothesis that water column nitrogen supply affects estuarine sandflat benthic microalgal community structure and function. Our field and mesocosm experiments assessed changes at both the population and functional group levels. Simulated water column nitrogen additions increased maximum community photosynthesis in most cases (Pbmax from photosynthesis vs. irradiance curves). Additional changes that resulted from nitrogen additions were decreases in porewater phosphate, increases in porewater ammonium, shifts in community composition from N2 fixing cyanobacteria toward diatoms, and detectable, though not statistically significant increases in biomass (as chlorophyll a). Results from field and laboratory experiments were quite similar, suggesting that laboratory experiments support accurate predictions of the response of intertidal benthic microalgae to changes in water column nutrient conditions.  相似文献   

9.
Riparian forests are highly valued for maintaining water quality through the retention of sediments and nutrients. They also provide some of the most diverse and species-rich habitats in the world. What is largely unknown, however, is how sediment deposition affects plant community composition in these forests. The objective of this study was to examine changes in plant community composition across a gradient of increasing rates of sedimentation in riparian forests in the southeastern Coastal Plain, USA. Seventeen plots were established within riparian forests receiving between 0 and 5.5 cm year−1 of sediment deposits. Species density and biomass estimates were collected annually from 2002 to 2006 for overstory and mid-story plant species within each plot. Percent cover and nested frequency of understory plant species were determined annually during 2004–2006. Measures of community composition in the understory, mid-story, and overstory layers of forests were compared to changes in environmental factors associated with increased sedimentation. In the understory, annual, exotic, and upland species had higher importance values in plots receiving high sediment deposition. The densities of shade-intolerant and N-fixing species in the mid-story also increased with increasing sedimentation rates. Increased overstory mortality was associated with high sedimentation rates, though increases in understory light levels in these gaps were not the main driver of understory species changes. Edaphic factors, such as soil texture, moisture, and temperature, were significantly correlated to species composition in all three forest layers, suggesting that changes in soil physical structure due to sedimentation may drive community-level changes in these forests.  相似文献   

10.
Recognition of North Pacific paleoceanographic events in the marginal Humboldt (Eel River) basin of northern California enables correlation of stratigraphic sections and development of a chronostratigraphy. Paleoclimatically related coiling shifts in Neogloboquadrina pachyderma (Ehrenberg) and benthic foraminiferal datums form the basis of the chronostratigraphy. Benthic foraminiferal datums are defined by the occurrence of selected benthic species and abundance maxima of benthic biofacies. The compiled chronostratigraphy is used to refine reconstructions of the depositional history of Humboldt basin. Paleoceanographic events, recognized by the distribution of benthic foraminiferal biofacies, are used to infer paleoceanographic history along the northeastern Pacific margin.

The similarity in coiling curves of N. pachyderma from the marine sequence at DSDP Site 173 and the coastal Centerville Beach section of Humboldt basin and at other independently dated sites along the northeastern Pacific margin demonstrates that matching records of climatic oscillations is a reliable method of correlating marine sequences. Benthic fauna from the Centerville Beach section vary in phase with climatically related coiling shifts in N. pachyderma. In particular these data show an increase in displaced neritic fauna during inferred warm intervals and resurgence of deeper bathyal fauna during inferred cool events. Similar data are observed from the inland Eel River section, demonstrating that benthic foraminiferal trends recognized at Centerville Beach can be identified elsewhere in Humboldt basin. This in-phase benthic response to climatic fluctuations probably results from changes in vertical depth range of many benthic species in response to paleoclimatically related vertical changes in water-mass position.

Depositional histories reconstructed for two key sites in southern Humboldt basin indicate low rates of sediment accumulation during early basin filling with hemipelagic sediments. Initiation of turbidite sedimentation in the early Pliocene resulted in a sharp increase in rate of sediment accumulation. This increase in rate of sediment accumulation is partially a response to tectonic uplift in the northern Coast Ranges and may be an effect of realignment of motion between the Pacific and North American plates at about this time. The inland site shoaled more rapidly during turbidite sedimentation as a result of a higher rate of sediment accumulation. The rate of sediment accumulation increased again at this site in the late Pliocene during deposition of shelf and nearshore facies. The Eel River region subsided concurrent with deposition of these shallow-water deposits.  相似文献   


11.
Spatial patterns in benthic infaunal community structure of Port Curtis estuary (north-eastern Australia) were determined from quantitative grab samples and examined in relation to environmental variables. A total of 149 riverine, estuarine and open coastal stations were sampled during the winter survey, and 5744 individuals from 466 species identified. Filter-feeding organisms (primarily polychaetes, molluscs and crustaceans) dominated the benthos, and accounted for 50% of the total species abundance and 30% of the total species richness. Most taxa were uncommon, and 98% of species individually represented less than 2% of the total abundance. Distributional patterns in total species richness and abundance were highly correlated, and both parameters varied significantly with sediment grain size. Numbers of species and individuals were typically highest in coarse-sand and gravel sediments, and were lowest in fine, well-sorted, sands. Cluster analysis of species abundance data revealed nine community groupings characterised by small species sub-sets with restricted distributions. These groupings were primarily related to sediment grain size, sediment organic carbon content, salinity and depth. Not all variation in community structure was explained by these environmental variables, and it is likely that other unmeasured factors play an important role in determining benthic faunal composition in the estuary.  相似文献   

12.
1. In eutrophic lakes, large amounts of the cyanobacterium Microcystis may overwinter in the sediment and re‐inoculate the water column in spring. 2. We monitored changes in pelagic and benthic populations of Microcystis in Lake Volkerak, The Netherlands. In addition, sedimentation rates and the rate of recruitment from the sediment were measured using traps. These data were used to model the coupling between the benthic and pelagic populations and to calculate the contribution of overwintering benthic and pelagic populations to the magnitude of the pelagic summer bloom. 3. Changes in the benthic Microcystis population showed a time lag of 3–14 weeks compared with the pelagic population. This time lag increased with lake depth. The largest amount of benthic Microcystis was found in the deepest parts of the lake. These observations suggest horizontal transport of sedimented Microcystis from shallow to deep parts of the lake. 4. Recruitment from and sedimentation to the sediment occurred throughout the year, with highest recruitment and sedimentation rates during summer. Model simulations indicate that the absence of benthic recruitment would reduce the summer bloom by 50%. 5. In spring, the total pelagic population was three to six times smaller than the total benthic population. Yet, model simulations predict that the absence of this small overwintering pelagic population would reduce the summer bloom by more than 64%. 6. Reduction of the overwintering pelagic populations, for instance by flushing, may be a useful management strategy to suppress or at least delay summer blooms of Microcystis.  相似文献   

13.
The use of the artificial defaunation of sediments is widespread among studies examining the disturbance and recovery of benthic macrofaunal communities. Standard methods of defaunation include driving the sediment to anoxia, freezing and sieving. In this study we performed a field experiment to test the assumption that the bacterial assemblages are unaffected by these methods of defaunation. Same-sized patches of sediment were defaunated by covering sediment with plastic sheeting (weighted by concrete blocks), freezing or sieving (1-mm mesh). Macrofaunal counts of sediment cores, taken to determine the effectiveness of each defaunation method, indicated that although none of the treatments removed 100% of macrofauna, all resulted in reduced macrofaunal presence, with the sieved treatment being the most effective. Bacterial samples were taken over the course of a month to determine both the initial and long-term effects of defaunation on bacterial community structure. Numerical effects were determined via epifluorescence microscopy, whereas differences in community composition were followed using PCR and denaturing gradient gel electrophoresis (DGGE). The anoxic treatments resulted in significant numerical changes in both active and total cell counts over time, while the frozen and sieved treatments caused less apparent changes. All of the treatments initially changed the composition of the community; however, anoxic and sieved treatments resulted in subtle changes while the frozen treatment produced more notable and variable changes within the community. The composition of the bacterial community in all of the treatment plots trended towards recovery, or convergence towards that of ambient sediments, by the t = 25-day sampling period.  相似文献   

14.
1. Reservoir creation and management can enhance many ecological services provided by freshwater ecosystems, but may alter the natural conditions to which aquatic biota have adapted. Benthic macroinvertebrates often reflect environmental conditions, and this community may be particularly susceptible to water‐level changes that alter sediment exposure, temperature regime, wave‐induced sediment redistribution and basal productivity. 2. Using a before–after control–impact experimental design, we assessed changes in macroinvertebrate community structure corresponding with changes in water‐level management in two lentic systems in the Voyageurs National Park, Minnesota, U.S.A. Littoral zone (depths 1–5 m) benthic macroinvertebrate assemblages were sampled in Rainy Lake (control system) and Namakan Reservoir (impact system) in 1984–85, and again in 2004–05 following a change in water‐level management that began in January 2000. The new regime reduced the magnitude of winter drawdown in Namakan Reservoir from 2.5 to 1.5 m, and allowed the reservoir to fill to capacity in late May, a month earlier than under the prior regime. Rainy Lake water levels were not altered substantially. 3. We found changes in macroinvertebrate community structure in Namakan Reservoir relative to Rainy Lake at 1–2 m depths but not at 3–5 m depths. These shallower depths would have been most directly affected by changes in sediment exposure and ice formation. 4. In 2004–05, Namakan Reservoir benthos showed lower overall abundance, more large‐bodied taxa and an increase in non‐insect invertebrates relative to 1984–85, without corresponding changes in Rainy Lake. 5. Changes in the benthic community in Namakan may reflect cooler water in spring and early summer as well as lower resource availability (both autochthonous production and allochthonous inputs) under the new regime.  相似文献   

15.
The relationship between benthos data and environmental data in 308 samples collected from the intertidal zone of the H?rnum tidal basin (German Wadden Sea) was analyzed. The environmental variables were current velocity, wave action, emersion time (all of which were obtained from a 2-year simulation with a numerical model) and four sediment grain-size parameters. A grouping of sample stations into five benthos clusters showed a large-scale (>1?km) zoning of benthic assemblages on the tidal flats. The zoning varied with the distance from the shore. Three sample applications were examined to test the predictability of the benthic community structure based on environmental variables. In each application, the dataset was spatially partitioned into a training set and a test set. Predictions of benthic community structure in the test sets were attempted using a multinomial logistic regression model. Applying hydrodynamic predictors, the model performed significantly better than it did when sediment predictors were applied. The accuracy of model predictions, given by Cohen’s kappa, varied between 0.14 and 0.49. The model results were consistent with independently attained evidence of the important role of physical factors in Wadden Sea tidal flat ecology.  相似文献   

16.
Sediment cores were collected from an area off the west coast of Norway, where a well-established kelp community made up mainly of Laminaria hyperborea is found. Chemical analyses of the sectioned sediment cores were made, which included organic carbon, carbohydrates and phenols. These were used to collate the sediments in order to establish whether the different sites had a common origin and if this was kelp-related. The organic matter content in the surface sediments appears to be related to the water depth, which determines the degree of perturbation at the sediment-water boundary and hence the sedimentation of the organic matter. The relation between carbohydrates and phenols in the sediment appears to indicate a common origin. However, the carbohydrate and phenol content in the sediment organic fraction appears to closely resemble (to be analogous) to that of the kelp Laminaria hyperborea. Although there are some diagenetic and decomposition changes in the subsurface (historical) organic matter (that may alter its findings), this study provides good evidence that the deposits were supplied by the kelp forest in the region. The sedimentation and export of kelp-derived material is of particular significance in terms of benthic ecology and production and may also play a significant role in the global carbon budget.  相似文献   

17.
Many researchers have shown the importance of water chemistry and benthic habitat characteristics for the conservation of the freshwater macroinvertebrate biodiversity. However, few authors have examined the physical effect of extreme water-level fluctuations in lakes. The present study set out to determine, through a comparative study between a regulated lake (Laja Lake, LL) and an unregulated lake (Icalma Lake, IL) of the Andean zone of southern Chile, how man-made disturbances of the natural hydrological regime affect the structure of the benthic macroinvertebrate community. The results showed LL had very low values for species richness, density and biomass in comparison with IL, and the community was composed mainly of few individuals belonging to opportunistic taxa such as Chironomidae and Naididae. We suggest that the low values in the regulated lake are potentially explained by littoral zone factors driven by the water-level fluctuations such as: desiccation, freezing of the biota, removal of organic particles from the sediment and absence of aquatic macrophytes.  相似文献   

18.
Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning.  相似文献   

19.
Summary High Arctic meiofaunal distribution, standing stock, sediment chemistry and benthic respiratory activity (determined by sediment oxygen consumption using a shipboard technique) were studied in summer 1980 on the NE Svalbard shelf (northern Barents Sea) and along a transect into the Nansen Basin, over a depth range of 240–3920 m. Particulate sediment proteins, carbohydrates and adenylates were measured as additional measures of benthic biomass. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigments (chlorophylls, pheopigments) were assayed. Pigment concentrations were found comparable to values in sediments from the boreal and temperate N-Atlantic. Meiofauna, which was abundant on the shelf, decreased in numbers and biomasses with increasing depth, as did sediment proteins, carbohydrates, adenylates and sediment oxygen consumption. Meiofaunal abundances and biomasses within the Nansen Basin were comparable with those observed in abyssal sediments of the North Atlantic. Nematodes clearly dominated in metazoan meiofauna. Protozoans were abundant in shelf sediments. Probably in response to the sedimentation of the plankton bloom, meiofauna abundance and biomass as well as sediment proteins, carbohydrates and adenylates were significantly correlated to the amount of sediment bound chloroplastic pigments, stressing the importance of food quantity to determine benthic stocks. Ninety-four percent of the variance in sediment oxygen consumption were caused by chloroplastic pigments. Benthic respiration, calculated per unit biomass, was 3–10 times lower than in the East Atlantic, suggesting low turnover rates in combination with a high standing stocks for the high Arctic benthos.  相似文献   

20.
The dynamics of the nutrient pools and their stoichiometry as well as their control by ecosystem metabolism (benthic and planktonic) and benthic–pelagic exchanges (sedimentation rates and sediment waterfluxes) were examined in the Mediterranean littoral (Blanes Bay, NE Spain). Dissolved organic nitrogen comprised about half of the nitrogen present in the water column and the carbon pool was dominated by the inorganic pool (95% of the carbon present in the water column). The dissolved and particulate organic pools were deficient in P relative to C and N, indicating a rapid recycling of P from organic matter. The pelagic compartment was heterotrophic, supported by significant allochthonous inputs of land material, which also contributed greatly to the sedimentary inputs (37% of total sedimenting carbon). In contrast, the benthic compartment was autotrophic, with the excess net benthic community production balancing the deficit in pelagic community production, leading to metabolic equilibrium at the station studied. Sedimentary inputs of nitrogen, phosphorus and silicon exceeded the benthic release, indicating that the benthic compartment acted as a sink for nutrients, consistent with its autotrophic nature. Carbon inputs to the benthic compartment also exceeded requirements, due to the allochthonous subsidies to the system, so that the benthic compartment stored or exported organic carbon. An erratum to this article can be found at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号