首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study describes the development of a macroinvertebrate based multimetric index for two stream types, fast and slow running streams, in the Netherlands within the AQEM project. Existing macroinvertebrate data (949 samples) were collected from these stream types from all over the Netherlands. All sites received a ecological quality (post-)classification ranging from 1 (bad status) to 4 (good status) based on biotic and abiotic variables, using a combination of multivariate analysis and expert-judgement. A number of bioassessment metrics was tested for both stream types (fast and slow running streams) to examine their power to discriminate between streams of different ecological quality within each stream type. A metric was selected for inclusion in the final multimetric index when there was no overlap of the 25th and 75th percentile between one (or more) ecological quality class(es). Out of all metrics tested, none could distinguish between all four ecological quality classes without overlap of the 25th and 75th percentile between one or more of the classes. Instead, metrics were selected that could distinguish between one (or more) ecological quality class(es) and all others. Finally, 10 metrics were selected for the assessment of slow running streams and 11 metrics for the assessment of fast running streams. Class boundaries were established, to make the assignment of scores to the individual metrics possible. The class boundaries were set at the 25th and/or 75th percentile of the individual metric values. The individual metrics were combined into a multimetric index. Calibration showed that 67% of the samples from slow running streams and 65% of the samples from fast running streams were classified in accordance to their post-classification. In total, only 8% of the samples differed more than one quality class from the post-classification. The multimetric index was validated with data collected in the Netherlands from 82 sites for the purpose of the AQEM project. Validation showed that 54% of the streams were classified correctly.  相似文献   

2.
Overview and application of the AQEM assessment system   总被引:1,自引:0,他引:1  
Hering  Daniel  Moog  Otto  Sandin  Leonard  Verdonschot  Piet F.M. 《Hydrobiologia》2004,516(1-3):1-20
The main objective of the European Union (EU) funded project AQEM1was to develop a framework of an assessment system for streams in Europe based on benthic macroinvertebrates that fulfils the requirements of the EU Water Framework Directive. Initial assessment methods for 28 European stream types and more generally applicable tools for stream biomonitoring in Europe were generated. The development of the system was based on a newly collected data set covering stream types in Austria, the Czech Republic, Germany, Greece, Italy, The Netherlands, Portugal and Sweden. Altogether, 901 benthic invertebrate samples were taken using a standardised multi-habitat sampling procedure and a large number of parameters describing the streams and their catchments was recorded for all sampling sites. From the stream and catchment characteristics measures of stress were derived. A large number of metrics was tested independently for each of the stream types, to identify the response of each metric to degradation of a site. This process resulted in up to 18 core metrics for the individual stream types, which were combined into a different multimetric index in each country. The multimetric AQEM assessment system is used to classify a stream stretch into an Ecological Quality Class ranging from 5 (high quality) to 1 (bad quality) and often provides information on the possible causes of degradation. AQEM provides a taxa list of 9557 European macroinvertebrate taxa with associated autecological information, a software package for performing all the calculations necessary for applying the multimetric AQEM assessment system and a manual describing all aspects of the application of the system from site selection to data interpretation.  相似文献   

3.
Nijboer  R.C.  Schmidt-Kloiber  A. 《Hydrobiologia》2004,516(1-3):347-363
The present study aims to investigate whether taxa with a small distribution range or taxa with low abundances indicate specific habitats or a high ecological quality and what the effect is if these taxa are excluded from ecological assessment. We compared autecological features between stream dwelling taxa with a mean abundance >5 individuals per sample and a mean abundance ≤5 individuals per sample as well as between taxa with a small distribution range and taxa with a large distribution range. The number of rare taxa (either with a small distribution range or with low abundances) in a sample was related to the ecological quality classes. To test the effect of exclusion of rare taxa we constructed 8 data sets all including 142 samples of Dutch lowland streams. From each data set we stepwise excluded taxa that had low abundances or taxa that were known to be restricted in their distribution range. With help of the AQEM assessment software we calculated the final ecological quality classes and the metrics that were included in the multimetric for the original data and the 8 selected data sets. Autecological features of the taxa within the different selections showed that taxa with small distribution ranges were often running water taxa, living on stones and gravel and indicating oligosaprobic water conditions in contrast to taxa that had a large distribution range. There were only small differences between taxa with low and high abundances. However, current velocity preference was lower for taxa with abundance ≤5 individuals per sample, saprobic values were higher and scores for typical stream habitats, such as lithal, psammal and akal were lower compared to high abundant taxa. If taxa with low abundances were excluded a higher ecological quality class was achieved in most cases, while excluding taxa with a small distribution range resulted in lower ecological quality classes. In conclusion, excluding taxa with a small distribution range led to worse ecological quality classes because these taxa have special autecological features that often indicate natural streams. On the other hand, excluding taxa with low abundances resulted in higher ecological quality classes because these taxa indicate more disturbed situations and because the number of taxa per sample was strongly reduced. Although the documentation of rare taxa (either with low abundances or with small distribution ranges) is often time and cost-intensive regarding field work, laboratory work, data processing, and analyses, the indicative power of these taxa for natural circumstances is essential and therefore rare taxa should be included in ecological assessment studies.  相似文献   

4.
Based on the requirements of the Water Framework Directive, a macroinvertebrate-based assessment system to evaluate the ecological quality of streams has been developed by AQEM project consortium. In the Czech Republic the impact of organic pollution was principal pressure studied, but some morphological degradation of some sampling sites could not be avoided. A multimetric assessment system for three stream types was developed. Detrended Correspondence Analysis was used for the detection of the response of macroinvertebrate communities to the gradient of organic degradation. Significant relationships between abiotic (BOD, TOC, nutrients) and biotic (saprobic index, ASPT) indicators of organic enrichment/eutrophication were identified. Separate storage of the riffle and pool components of each multi-habitat sample allowed differences between these habitats to be compared in context of the metrics applied in the assessment system. Lotic and lentic habitats differed in taxonomic composition, ecological traits and biotic indices. The separate assessment of the riffle and pool parts of samples provides additional useful information when combined effects of organic pollution and morphological degradation are to be considered.  相似文献   

5.
A gap in the European Water Framework Directive (WFD) is addressed, aiming for the development of an ecological quality status assessment tool based solely on the Biological Quality Element benthic macroinvertebrates from intertidal rocky shores. The proposed Rocky shore Macroinvertebrates Assessment Tool (RMAT) was tested and validated along disturbance gradients (organic enrichment). During the whole process, the response of widely used metrics (e.g. Hurlbert index, Shannon-Wiener index, AZTI’s Marine Biotic Index; Bentix biotic index) and models (i.e., metrics combined) was compared to results provided by the Marine Macroalgae Assessment Tool to the same sampling sites.The RMAT is a multimetric index compliant with the WFD based on the benthic macroinvertebrates community, combining ‘abundance’ (Hurlbert index) and ‘taxonomic composition’ (Bentix index using density and biomass data) metrics. It performed well along anthropogenic disturbance gradients, showing ecological quality increasing from close to far away from the disturbance.The RMAT is a promising tool for rocky shore ecological assessment in the scope of the WFD or other monitoring activities worldwide.  相似文献   

6.
Beyond Masses and Blooms: The Indicative Value of Oligochaetes   总被引:2,自引:2,他引:0  
The European Water Framework Directive (WFD) defines a framework for assessing water bodies in Europe in the future. The conditions in the Directive impose a strong demand for “new” assessment systems. The AQEM project developed an assessment system for European streams using macroinvertebrates. Almost 900 samples were taken in about 400 streams covering 29 stream types distributed over eight countries. The role of the Oligochaeta within this European database was analysed. Almost half a million specimens of oligochaetes were collected in 772 samples. Eight families, 41 genera and 69 species were recorded, although identification emphasised the families Tubificidae and Naididae. Three countries identified oligochaetes to species level, most others restricted their identifications to easy identifiable taxa. Numbers of specimens, species, genera and families differed strongly between the countries due to method, although standardised, and taxonomic knowledge. About 50% of all collected oligochaete taxa had assigned biological and ecological indicator values for metric calculation in the AQEM assessment system. A further refinement of this indication list as well as increased coverage of oligochaete taxa was advised. Weighted averaging was used to evaluate the relation between oligochaete distribution and ecological quality class. It was concluded that when higher taxonomic levels are used in assessment, the quality evaluation results become biased. Furthermore, oligochaetes can tell us much more about the ecological status of streams than is commonly assumed. Differences in ecological optima among Limnodrilus udekemianus, Ilyodrilus templetoni, Aulodrilus pluriseta, Nais communis, and Spirosperma ferox are shown.  相似文献   

7.
Buffagni  Andrea  Erba  Stefania  Cazzola  Marcello  Kemp  Joanna Lynn 《Hydrobiologia》2004,516(1-3):313-329
In accordance with the aims of the E.U. funded AQEM Project, an assessment system module based on aquatic macroinvertebrates was developed for small sized rivers in the southern Apennines (south Italy). Eleven stream sites, impacted to a greater or a lesser extent by organic pollution and/or habitat impairment and chosen to cover the whole degradation gradient present in the geographical area were sampled in three seasons. The samples were collected following a proportional, multihabitat procedure, afterwards considering separately the replicates collected in the depositional (pool) and transport (riffle) areas for the analysis. A PCA multivariate analysis was performed to extract the main axes of variation of the biological community, which resulted in the first axis being strongly correlated to ecological quality. The final assessment module is based on a multimetric system, structured by selecting the best metrics in simulating the first axis gradient. The system considers a total of 15 different metrics, mainly providing information concerning tolerance to pollution, taxa richness, habitat features and trophic structure of the community. In accordance with the WFD requirements, some of these metrics are based on abundance classes of taxa. Depositional and transport units, due to the observed dissimilarity in the structure of their benthic communities, were kept separate during the development of the assessment system to retain this potentially useful information and to clear interpretation of the results. Both `riffle' and `pool' invertebrate data showed clear differences in ecological quality between sites. Nevertheless, the final assessment module is based on the macroinvertebrates inhabiting depositional areas of rivers only, because the metrics for these river units showed a better performance than those examined for the transport river units. The application of the assessment module requires 10 replicates to be quantitatively collected, for a total area of 0.5 m2. In terms of sampling and identification effort, the assessment module shows a good comparability with the standard Italian method presently in use and might thus be easily applied for river sites classification according to the Water Framework Directive in southern Italy. The site classification obtained with the proposed multimetric index shows a very good correspondence with the post-classification based on multivariate analysis.  相似文献   

8.
The purpose of this study was to test the applicability of different methods of river habitat assessment and their respective indices in a series of sample sites in Italy. These investigations were carried out within the EU AQEM project with the aim of combining the macroinvertebrate information with that achieved by investigating the hydromorphological characteristics of the river ecosystem as well as the surrounding landscape features. The River Habitat Survey (including the derived indices Habitat Modification Score and Habitat Quality Assessment) from U.K., and three Italian indices (Index of Fluvial Functioning, Buffer Strip Index and Wild State Index) were applied at 33 AQEM sites distributed in three different Italian river types. The obtained results indicate the overall ability of the applied indices to detect the degradation gradient, including river morphology and habitat, in the studied riverine ecosystems. Index of Fluvial Functioning seems useful to promptly describe the ecological quality of rivers as suggested by the good correlation with the AQEM multimetric biotic index. The Buffer Strip Index, showing a clear affinity with the Habitat Quality Assessment, seems suitable to assess richness and quality of the physical structure of a riverine site. The Habitat Modification Score recorded efficiently the morphological impact where present (e.g., North Apennine river sites), while the Italian indices appear to be not appropriate for differentiating this impact type from the general degradation of rivers.  相似文献   

9.
The requirements of the European Water Framework Directive (WFD), aimed at an integrative assessment methodology for evaluating the ecological status of water bodies are frequently being achieved through multimetric techniques, i.e. by combining several indices, which address different stressors or different components of the biocoenosis. This document suggests a normative methodology for the development and application of Multimetric Indices as a tool with which to evaluate the ecological status of running waters. The methodology has been derived from and tested on a European scale within the framework of the AQEM and STAR research projects, and projects on the implementation of the WFD in Austria and Germany. We suggest a procedure for the development of Multimetric Indices, which is composed of the following steps: (1) selection of the most suitable form of a Multimetric Index; (2) metric selection, broken down into metric calculation, exclusion of numerically unsuitable metrics, definition of a stressor gradient, correlation of stressor gradients and metrics, selection of candidate metrics, selection of core metrics, distribution of metrics within the metric types, definition of upper and lower anchors and scaling; (3) generation of a Multimetric Index (general or stressor-specific approach); (4) setting class boundaries; (5) interpretation of results. Each step is described by examples.  相似文献   

10.
The European list of aquatic macro-invertebrate taxa, and its associated ecological database, originated within the context of the AQEM project and have been extended during the STAR project. The AQEM/STAR taxalist is a product of co-operation between applied freshwater ecologists and scientists from different zoological fields, applied partners and the administration. The basic idea is that a sound understanding of benthic invertebrate ecology is a prerequisite for the implementation of a biological approach to aquatic ecosystem management in Europe. The database has been generated under the management of BOKU (University of Natural Resources and Applied Life Sciences, Vienna) and UDE (University of Duisburg-Essen) and provides an important means of standardisation and unification of ecological classifications in Europe. This paper outlines the aims for setting up the AQEM/STAR macro-invertebrate taxalist and autecological database and provides a current summary of the numbers of aquatic orders, families, species, and species occurrences in 14 European countries. The number of available and applicable assignments of taxa to each ecological parameter is summarised and examples are given for different parameters and taxonomic groups. Gaps in the autecological information are identified and discussed. Besides its ecological relevance, the operational character of this database is underlined by the fact that it provides the associated taxon codes for each of five different European assessment systems for nearly 10,000 European macro-invertebrate taxa.  相似文献   

11.
Pinto  Paulo  Rosado  Joana  Morais  Manuela  Antunes  Isabel 《Hydrobiologia》2004,516(1-3):191-214
A sampling programme was developed in three stream types, of siliceous geology, from the south of Portugal (small and mid-sized lowland streams and small-sized median altitude streams). The samples were taken according to the AQEM site protocol procedure, keeping transport and depositional habitats samples separated. In each stream type, at least 13 sites were studied over a gradient of organic pollution (pre-classification). The benthic macroinvertebrates were identified to the lowest possible taxonomic level. A Detrended Correspondence Analysis of macroinvertebrate communities identified a gradient of organic pollution strongly related to the first axis. This ordination allowed the establishment of classes of organic pollution using the Kmeans software (post-classification). Metrics based on the macroinvertebrate communities (tolerance, richness, composition and trophic structure) were computed and tested for correlation with the gradient of organic pollution (first axis of DCA). Most of the selected metrics were able to discriminate the four quality classes (high, good, moderate and poor) of ecological status. A multimetric index, integrating ASPT′ index, Trichoptera families and percentage of Gasteropoda, Oligochaeta and Diptera, is proposed to assess the ecological status of Portuguese southern siliceous basins.  相似文献   

12.
The space-for-time approach is widely used in fundamental and applied ecology but assemblages from some habitats are highly variable. For example, streams may show marked spatio-temporal changes in the taxonomic composition of the macroinvertebrate assemblages. We exemplify the effect of the temporal component ‘season’ on some assemblage-derived stream quality assessment metrics under the assumptions of the space-for-time and the replicated samples approaches. Benthic macroinvertebrates were sampled in spring, summer, and fall from two stream types, namely streams in the Pleistocene sediments of the alpine foothills and small fine substrate dominated siliceous highland rivers in southern and central Germany. As exemplified for ASPT and the German multimetric index (MMI), the data showed no effect of season when samples were regarded as independent, whereas stream quality decreased between spring and fall in the replicated samples approach. The transformation of MMI to rank-ordered stream quality classes depicted a decrease in perceived stream quality in 29% and 54% of the sites by summer and early fall, respectively, when compared to spring samples. We thus suggest (1) to test seemingly robust metrics in a repetitive measures approach for other stream types and regions, and (2) to standardize the sampling season for ecological quality assessment. Based on this example, we assume that many subtle, but significant, environmental trends are still to be detected in highly heterogeneous habitats from various ecosystems.  相似文献   

13.
Ofenböck  Thomas  Moog  Otto  Gerritsen  Jeroen  Barbour  Michael 《Hydrobiologia》2004,516(1-3):251-268
We investigated four stream types in four different bioregions, classified by catchment area and altitude, and stressed by different degrees of organic pollution and habitat alteration. We examined a macro-invertebrate based multimetric approach for Austrian rivers as a potential assessment method within the European Water Framework Directive. Benthic macro-invertebrate data (100 samples including reference sites) were used to develop a multimetric index for each stream type and targeted stressors. Sites were pre-classified based on physical, chemical, and land use criteria into five ecological quality classes. More than 200 biological metrics were tested for their sensitivity to the targeted stressors, their spatial and temporal variability and their ability to discriminate between different types and degrees of stress. Metrics for index development were selected to reflect different levels of information including ecosystem, community, and individual levels (Karr, 1991; Barbour et al., 1995; Gerritsen, 1995). Combinations of metrics were selected to distinguish best between non or slightly impaired and stressed sites (evaluated by calculating discrimination efficiency values and power analysis). The resulting four indices comprised seven to nine metrics from five to seven metric categories, and distinguished reference/slightly disturbed sites from stressed sites with close to 100% efficiency. The indices can form the basis for stressor-specific assessment of stream condition.  相似文献   

14.
Sandin  Leonard  Hering  Daniel 《Hydrobiologia》2004,516(1-3):55-68
With the EC Water Framework Directive (WFD) the ecological status of a water body is defined by comparing the observed biological community composition present with near-natural reference conditions. The ecological status is then classified into five quality classes (high, good, moderate, poor and bad). It is of great importance that `good ecological status' has the same meaning within the European Union, since water bodies not measuring up to these standards have to be improved. Therefore, the Ecological Quality Ratios (EQR) at high-good, and good-moderate quality class boundaries will be intercalibrated. Each country has to report physical, chemical, and biological data from two sites at each of these boundaries and since most data exist for benthic macroinvertebrates, this quality element will be of great importance in the intercalibration process. The aim of this study was therefore to compare the results of different benthic macroinvertebrate metrics used to assess the impact of organic pollution (including eutrophication) (one of the major human impacts on European streams). A selection of the data sampled in the AQEM project was evaluated, where benthic macroinvertebrate- and abiotic data from four countries (Austria, the Czech Republic, Portugal and Sweden) and seven `stream types' were included. An organic pollution (including eutrophication) gradient was defined using Principal Component Analysis and the boundaries for high-good and good-moderate ecological status set by the partners from each country were used to define arbitrary class boundaries. The Average Score Per Taxon (ASPT) was well correlated with the stress gradient in most stream types, whereas the Saprobic Index worked clearly better than ASPT in those countries (Austria and the Czech Republic) where macroinvertebrates are generally identified to lower (species) as opposed to a higher (genus or family) level of identification. Defining harmonised class boundaries is difficult; this process has to consider the natural differences between stream types (e.g. in the reference values of metrics) but has to eliminate different perceptions of ecological quality.  相似文献   

15.
Multimetric biotic indices increasingly are used to complement physicochemical data in assessments of stream quality. We initiated development of multimetric indices, based on fish communities, to assess biotic integrity of streams in two physiographic regions of central Romania. Unlike previous efforts to develop such indices for European streams, our metrics and scoring criteria were selected largely on the basis of empirical relations in the regions of interest. We categorised 54 fish species with respect to ten natural-history attributes, then used this information to compute 32 candidate metrics of five types (taxonomic, tolerance, abundance, reproductive, and feeding) for each of 35 sites. We assessed the utility of candidate metrics for detecting anthropogenic impact based on three criteria: (a) range of values taken, (b) relation to a site-quality index (SQI), which incorporated information on hydrologic alteration, channel alteration, land-use intensity, and water chemistry, and (c) metric redundancy. We chose seven metrics from each region to include in preliminary multimetric indices (PMIs). Both PMIs included taxonomic, tolerance, and feeding metrics, but only two metrics were common to both PMIs. Although we could not validate our PMIs, their strong association with the SQI in each region suggests that such indices would be valuable tools for assessing stream quality and could provide more comprehensive assessments than the traditional approaches based solely on water chemistry.  相似文献   

16.
This study outlines an alternative, versatile and flexible procedure to the Assessment System for the Ecological Quality of Streams and Rivers throughout Europe using Benthic Macroinvertebrates (AQEM) protocol for selecting and assessing candidate bioindicators for Water Framework Directive (WFD) compliant monitoring programmes. Based on different forms of benthic macroinvertebrate data using relative abundance of family level taxonomic groups, metrics and traits collected during spring 2010 at 96 lotic sites across northern Portugal, the procedure employs components of top down and bottom up analytical processes and introduces the concept of niche breadth to assess biological quality element response to environmental and stressor parameters across different spatial levels. Random Forest classification revealed that fractal and non-fractal land use metrics at basin and local level were extremely important determinants of Water Framework Directive determination of “Good” ecological quality, particularly at the local scale. The amount of urbanization at the lower spatial level was a particularly important determinant of ecological quality, while the extent and type of forest (especially coniferous) was more important at higher, river basin scale. Distance-based linear models (DISTLM) and distance-based redundancy analysis (dbRDA) were used to determine associations between invertebrate data and non-redundant environmental predictors selected using the Akaike Information Criterion (AIC). Results revealed a stronger association between invertebrate traits and selected environmental predictors compared to the other types of invertebrate data, although some association between invertebrate relative abundance and eutrophication was detected. Principal Components Analyses (PCA) were run for the non-redundant sets of predictors for each macroinvertebrate data set to extract an environmental quality gradient along the first axis. Niche breadth, calculated for candidate indicators to avoid bias resulting from expert judgement, was distributed by rank along its respective PCA gradient. Five candidate indicators for each data type were selected for their preference for the most pristine sites and five were selected due to their close link with the most degraded streams. Candidate bioindicators for impacted sites tended to be stenobiotic in character, due to the impoverished structural and functional diversity associated with such conditions. Finally Partial Least Squares Regression was used to refine and validate selected candidate metrics, to produce a comprehensive final list of macroinvertebrate measures of ecological quality.  相似文献   

17.
Because diatom communities are subject to the prevailing water quality in the Great Lakes coastal environment, diatom‐based indices can be used to support coastal‐monitoring programs and paleoecological studies. Diatom samples were collected from Great Lakes coastal wetlands, embayments, and high‐energy sites (155 sites), and assemblages were characterized to the species level. We defined 42 metrics on the basis of autecological and functional properties of species assemblages, including species diversity, motile species, planktonic species, proportion dominant taxon, taxonomic metrics (e.g., proportion Stephanodiscoid taxa), and diatom‐inferred (DI) water quality (e.g., DI chloride [Cl]). Redundant metrics were eliminated, and a diatom‐based multimetric index (MMDI) to infer coastline disturbance was developed. Anthropogenic stresses in adjacent coastal watersheds were characterized using geographic information system (GIS) data related to agricultural and urban land cover and atmospheric deposition. Fourteen independent diatom metrics had significant regressions with watershed stressor data; these metrics were selected for inclusion in the MMDI. The final MMDI was developed as the weighted sum of the selected metric scores with weights based on a metric’s ability to reflect anthropogenic stressors in the adjacent watersheds. Despite careful development of the multimetric approach, verification using a test set of sites indicated that the MMDI was not able to predict watershed stressors better than some of the component metrics. From this investigation, it was determined that simpler, more traditional diatom‐based metrics (e.g., DI Cl, proportion Cl‐tolerant species, and DI total phosphorus [TP]) provide superior prediction of overall stressor influence at coastal locales.  相似文献   

18.
Ecological water quality problems are frequently connected to increment of phytoplankton productivity and overdominance of some phytoplankton species. Metrics that show monotonously increasing or decreasing tendencies along stressor gradients is recommended for ecological state assessment. Diversity metrics are influenced by various physical disturbances and show high within-year variability; thus, there is no agreement on the usefulness of these metrics as state indicators.To test the usefulness of phytoplankton diversity in ecological state assessment we investigated the productivity–diversity relationships for lakes and rivers in the Carpathian Basin (Hungary). We demonstrated that the shape of productivity–diversity relationship depends on the investigated water body type. Regarding lakes, hump-shaped relationship was found for all computed metrics. Parallel with the increase in phytoplankton productivity values, diversity metrics showed monotonously increasing tendencies in rhithral and decreasing tendencies in large potamal rivers. We found no systematic relationship in the case of small lowland rivers.Changes of diversity metrics calculated for species and functional groups showed similar tendencies within the types, only the slopes of regression lines differ each other.The use of diversity metrics as ecological state indicators should be restricted to water body types where diversity decreases or increases monotonously with phytoplankton biomass. Regarding the lakes the use of diversity metrics is not recommended for ecological state assessment. In rhithral and large potamal river assessment, application of diversity metrics should be strongly considered. We demonstrated that diversity metrics can be useful components of multimetric indices proposed to use by the Water Framework Directive.  相似文献   

19.
A first approach towards an integrated, macroinvertebrate based, river type specific system for the assessment and classification of the ecological quality in Greek rivers affected by nutrient enrichment is presented. This system, which was developed within the framework of the AQEM project application in Greece, is regionally adapted and integrated, since it contains a multitude of biotic and abiotic factors affecting taxa presences and abundances. The methodology applied is very promising for the application of the Water Framework Directive (WFD) in Greece. According to the AQEM project, a seasonal `multi habitat sampling' procedure, at 45 sampling sites, scattered over three river types, was applied. In addition, a large set of hydrological, morphological, geological, biological, hydrochemical parameters and anthropogenic factors were considered. The system is based on a new, river type specific biotic metric, adapted for Greek conditions (BMG) and a new nutrient pollution metric. The developed metrics showed high correlations with each other. Hence, BMG seems to be suitable for the ecological quality assessment of Greek running waters affected by nutrients. Moreover, by applying BMG, a final classification of the rivers into five quality classes, according to the demands of the WFD, was achieved.  相似文献   

20.
Size spectra exhibit common patterns of variation and predictable responses to pressures across ecosystem types, functional guilds and taxonomic groups. Here, we extend the size spectra approach to phytoplankton ecological status assessment in transitional waters by developing, testing and validating a multi-metric index of size spectra sensitivity (ISS-phyto), which integrates size structure metrics with others such as phytoplankton diversity, biomass and sensitivity of size classes to anthropogenic disturbance. The ability of various theoretical models of size spectra sensitivity to discriminate between disturbed and undisturbed ecosystems and levels of anthropogenic stress was evaluated. We used data on phytoplankton samples collected in 14 Mediterranean and Black sea transitional water ecosystems (coastal lagoons) from Italy, Albania, Greece, Bulgaria and Romania, and compared the models’ efficiency by looking at their pressure–impact response along salinity and enrichment gradients, the latter quantified as variations in dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP). Data from a fifteenth Mediterranean lagoon was used for external validation purposes. Right asymmetric models of size class sensitivity, implying higher sensitivity of smaller cell size classes, were found to contribute to the ISS-phyto multimetric tool more effectively than symmetric and left asymmetric models, distinguishing disturbed from undisturbed lagoons and disturbed from undisturbed stations within the same lagoon. When based on right asymmetric sensitivity models, i.e., those that were most efficient in identifying anthropogenic impacts, ISS-phyto also showed the best fit of pressure–response relationships along the salinity and enrichment gradients; at low to high levels of impact ISS response was driven by size class sensitivity and at very high impacts by phytoplankton biomass. A scheme for the classification of Ecological Quality Status based on ISS-phyto is proposed and validated. The validation procedure found that ISS-phyto is an effective and sensitive monitoring tool, robust, easy to apply and to inter-calibrate among laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号