首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
At the site of natural ingress of oil, microbial diversity in the Central Baikal bottom sediments differing in the chemical composition of pore waters was studied by molecular biological techniques. The sediments saturated with oil and methane were found to contain members of 10 bacterial and 2 archaeal phyla. The oxidized sediment layer contained methanotrophic bacteria belonging to the Alphaproteobacteria, which had a specific structure of the pmoA gene and clustered together with uncultured methanotrophs from cold ecosystems. The upper sediment layer also contained oil-oxidizing bacteria and the alkB genes most closely related to those of Rhodococcus. The microbial community of reduced sediments exhibited lower diversity and was represented mostly by the organisms involved in hydrocarbon biodegradation.  相似文献   

3.
The taxonomic composition of microbial communities of Lake Baikal surface microlayer was studied by pyrosequencing of the 16S rDNA amplicons. Statistically reliable differences were found between bacterioneuston of the shallow and deep-water stations. The shallow station community was characterized by higher diversity than the deep-water one. While bacterioneuston communities were shown to be less diverse than the water column communities, their diversity was comparable to that of other biofilm associations. Microbial communities of Lake Baikal surface microlayer were shown to be similar to those of the water column in the composition of predominant phyla, while differing considerably at the genus level. Bacterioneuston of Lake Baikal was comparable to microbial communities of the surface microlayer of other freshwater basins, although it was characterized by high abundance of the Alphaproteobacteria and Verrucomicrobia. High abundance of photoheterotrophs compared to the water column communities of other freshwater basins was another distinctive feature of Lake Baikal bacterioneuston. Our results showed the Lake Baikal surface microlayer to be a specific microbial community with low species diversity and relatively high abundance of photoheterotrophic microorganisms.  相似文献   

4.
The results of the first methodical investigation into the aerobic methanotrophic communities inhabiting the bottom sediments of Lake Baikal are reported. Use of the radioisotopic method revealed methane consumption in 12 10- to 50-cm-long sediment cores. The maximum methane consumption rates (495-737 microl/(dm3 day) were recorded in sediments in the regions of hydrothermal vents and oil and gas occurrence. Methane consumption was most active in the surface layers of the sediments (0-4 cm); it decreased with the sediment depth and became negligible or absent at depths below 20 cm. The number of methanotrophic bacteria usually ranged from 100 to 1000 cells/cm3 of sediment and reached 1 million cells/cm3 in the regions of oil and gas occurrence. The 17 enrichment cultures obtained were represented mainly by morphotype II methanotrophs. Phylogenetic analysis of the enrichment cultures in terms of the amino acid sequence of the alpha subunit of the membrane-bound methane monooxygenase revealed the predominance of methanotrophs of the genus Methylocystis. The results obtained suggest the presence of an active aerobic methanotrophic community in Lake Baikal.  相似文献   

5.
Rusinek OT 《Parazitologiia》2006,40(2):155-170
Analysis of infracommunities and component communities of fish parasites in Lake Baikal has been conducted for the first time. It has been revealed that parasite infracommunities for the majority of Baikal fishes are weakly balanced and impoverished (the Berger-Parker Index is > 0.5; Evension is < 0.5; the Brillouin Index is < 1). The highest diversity and balance of the communities are characteristic for carnivorous fishes (Brachymystax lenok, Hucho taimen, Thymallus arcticus, Esox lucius, and Percafluviatilis). The component parasitic communities of Leuciscus leuciscus baicalensis, Rutilus rutilus, and Leocottus kesslerii are the most diverse in Lake Baikal since the Shennon index for L. leuciscus baicalensis, R. rutilus, and L. kesslerii is 2.4, for Paracotlus knerii--2.2, Limnocoitus godlewskii--2.3, Phoxinus phoxinus--2.1, Lota lota and Limnocuttus pallidus--1.9, P. fluviatilis--1.8, Leuciscus idus--1.8. The component parasitic communities of other fishes in Lake Baikal have low indices of biological diversity (H = 0.5-1.05, Smp is close to 1). A classification of mature and immature components of parasitic communities based on the ratio of specialist species and generalist species has been proposed. It is established that the component parasitic communities in sublitoral, profundal, and pseudoabyssal zones are mature, while in the littoral zone they are immature (impoverished and weakly balanced). The component parasitic communities in benthophagous fishes and predators are mature, in planktivorous fishes they are immature. The component parasitic communities are mature in the family Cyprinidae and immature in the families Coregonidae and Cottidae. The component parasitic communities of the Boreal Plain and Boreal Submountain faunal complexes are mature, but they are immature in Lake Baikal and Arctic freshwater complexes.  相似文献   

6.
7.
8.
The survival rate, metabolic activity, and ability for growth of microbial communities of Lake Baikal have been first studied after exposure to extremely low temperatures (freeze-thawing) for different lengths of time. It has been shown that short-term freezing (1–3 days) inhibits the growth and activity of microbial communities. The quantity of microorganisms increased after 7-and 15-day freezing. In the periods of maximums, the total number of microorganisms in the test samples was twice as high as in the control. It was established that after more prolonged freezing the microorganisms required more time after thawing to adapt to new conditions. In the variants with 7-and 15-day freezing, the activities of defrosted microbial communities were three or more times higher than in the control. The survival rate and activity of Baikal microorganisms after freeze-thawing confirms the fact that the Baikal microbial communities are highly resistant to this type of stress impact.  相似文献   

9.
The survival rate, metabolic activity, and ability for growth of microbial communities of Lake Baikal after exposure to extremely low temperatures (freeze-thawing) for different lengths of time have been first studied. It has been shown that short-term freezing (1-3 days) inhibits the growth and activity of microbial communities. The quantity of microorganisms increased after 7- and 15-day freezing. In the periods of maximums, the total number of microorganisms in the test samples was twice as high as in the control. It was established that after more prolonged freezing the microorganisms required more time after thawing to adapt to new conditions. In the variants with 7- and 15-day freezing, the activities of defrosted microbial communities were three or more times higher than in the control. The survival rate and activity of Baikal microorganisms after freeze-thawing confirms the fact that the Baikal microbial communities are highly resistant to this type of stress impact.  相似文献   

10.
Taxonomic diversity of Lake Baikal bacteria during the period of massive under-ice development of dinoflagellate Gymnodinium baicalense was studied. During the ice-covered period in 2013, both the abundance and biomass of G. baicalense were several orders of magnitude higher than the values for previous years, the maximum values were 8.9 × 106 cells/L and 405 g/m3, respectively. The taxonomic structure of bacterial communities was determined using the data obtained by 454 pyrosequencing (Roche) with Mothur 1.19.0. Predominance of three phyla was revealed: Bacteroidetes, Proteobacteria, and Actinobacteria. Massive dinoflagellate development resulted in a considerable decrease in the richness and diversity of bacterial communities compared to the results of the earlier long-term studies.  相似文献   

11.
Bacterial communities of the water and the biofilm formed during five years on an artificial substrate in Lake Baikal were studied by the pyrosequencing of 16S rRNA gene fragments; taxonomic diversity of bacterial communities and differences in their structure were revealed. The biofilm community contained mainly representatives of three phyla: Cyanobacteria, Bacteroidetes, and Proteobacteria; the amounts of other groups were within 1%. Bacterial community of the plankton was more heterogeneous; along with the dominant phyla (Bacteroidetes, Actinobacteria, and Proteobacteria) 15% of the members were of the other phyla. The use of pyrosequencing allowed to reveal 35 bacterial phyla in Lake Baikal, some of which were identified for the first time; moreover, minor groups of microorganisms (including only several sequences), which were not earlier determined by other molecular methods were found.  相似文献   

12.
In the southern Lake Baikal area, in the region of the Khamar-Daban ridge, which borders the banks of Lake Baikal, there was found in abundant population the tick I. trianguliceps. Data on the ecology of the tick in this particular part of its distribution area and on its ecological links revealed by factor analysis of the tick's habitat of the first and second order by means of electronic computers are given.  相似文献   

13.
The efficiency of neuston sampling from freshwater Lake Baikal with Garrett’s metal screen and polycarbonate membrane filters has been estimated. It is revealed that both sampling methods demonstrate similar results. Method selection is determined by climatic and hydrological factors. The results of the present work demonstrate that sampling using a metal screen can be recommended for the complex characterization of neuston biofilm and estimation not only microbiological, but also molecular and chemical parameters, because it allows collecting the water volume required for all analyses.  相似文献   

14.
Massive parallel sequencing (the Roche 454 platform) of the 16S rRNA gene fragments was used to investigate microbial diversity in the sediments of the Posolsk Bank cold methane seep. Bacterial communities from all sediment horizons were found to contain members of the phyla Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes, Nitrospirae, Chloroflexi, Proteobacteria, and the candidate phyla Aminicenantes (OP8) and Atribacteria (OP9). Among Bacteria, members of the Chloroflexi and Proteobacteria were the most numerous (42 and 46%, respectively). Among archaea, the Thaumarchaeota predominated in the upper sediment layer (40.1%), while Bathyarchaeota (54.2%) and Euryarchaeota (95%) were predominant at 70 and 140 cm, respectively. Specific migration pathways of fluid flows circulating in the zone of gas hydrate stability (400 m) may be responsible for considerable numbers of the sequences of Chloroflexi, Acidobacteria, and the candidate phyla Aminicenantes and Atribacteria in the upper sediment layers and of the Deinococcus-Thermus phylum in deep bottom sediments.  相似文献   

15.
The majority of naturally occurring biofilms contain numerous microorganisms that have not yet been cultured. Additionally, there is little information available regarding the genetic structure and species diversity of these communities. Therefore, we characterised the species diversity, structure and metagenome of biofilms grown on stones and steel plates in the littoral zone of Lake Baikal (East Siberia, Russia) by applying three different approaches. First, light microscopy enabled identification of the species diversity of biofilm-forming cyanobacteria on different substrates with the dominance of Rivularia rufescens, Tolypothrix limbata, Chamaesiphon fuscus, Ch. subglobosus, and Heteroleibleinia pusilla. Additionally, scanning electron microscopy was used to show the spatial structure of biofilms. Finally, sequence analysis of 30,660 16S rRNA clones indicated a high diversity within the biofilm communities, with the majority of the microbes being closely related to Cyanobacteria (8–46% sequences), Proteobacteria (14–43%), and Bacteroidetes (10–41%). Rivularia sp., Pseudanabaena sp., and Chamaesiphon spp. were the dominant cyanobacterial phylotypes.  相似文献   

16.
17.
Chemical and biological components of the Selenga River waters, the largest tributary of Lake Baikal, differ significantly from the lake waters. Active transformation processes of river waters into the lake ones occur in the vast barrier-like zone in the river-sea boundary areas. This study presents results on the spatial distribution and dynamics of water chemistry as well as the quantity and diversity of phyto- and bacterioplankton at a distance of 14 km off the Selenga River mouth. The most representative tracers of river and lake waters are total amount of ions and sulphates. Principal changes of chemical and biological parameters were fixed at 1–3 km off the Selenga River mouth that was determined as a mixing zone. Intense development of phytoplankton and eukaryotic picoplankton causing the decrease of nitrate and phosphate concentrations and organic matter rise were registered in this area. Gradual replacement of river phytoplankton by the lake one, abundance reduction of microorganisms and organotrophic bacteria and percentage increase of oligotrophic and psychrotolerant bacteria occurred in the mixing zone. Replacement of PC-rich picocyanobacteria by PE-rich ones was also recorded here. At a distance of 5–7 km off the shore, nutrient concentration and plankton composition were similar to those of Lake Baikal.  相似文献   

18.
Microbial communities and hydrocarbon contents have been studied in two regions of natural oil seepage in Lake Baikal: (1) opposite the Bol’shaya Zelenovskaya River mouth (studied previously) and (2) near Cape Gorevoi Utes (discovered in 2005). The abundance of both heterotrophic and hydrocarbon-oxidizing microorganisms is significantly higher in water samples from the first region, where the oil is biologically degraded. In the surface soil layer at stations located in the immediate vicinity of oil seepage site, the abundance of n-alkane-oxidizing microorganisms reaches 2000 cells/ml, and that of oil-oxidizing microorganisms reaches 2600 cells/ml. In water samples from near Cape Gorevoi Utes, the abundance of these groups of microorganisms does not exceed 190 and 500 cells/ml, respectively.  相似文献   

19.
20.
The following stages in the formation of sediments in Lake Baikal have been distinguished. In the Middle Miocene lacustrine deposits accumulated in the southern depression. In Early and Middle Pliocene, as well as in Early-Middle Pleistocene the bottom of the southern and middle Baikal depressions was occupied by large lakes, but the northern basin was mainly dry with a system of small lakes, streams and rivers. This accounts for the great facies variety and the genetic heterogeneity of sediments in the northern depression. At the end of Middle and in the Late Pleistocene an abrupt warping of the depression took place, and a shore-line similar to the present one was formed. Sands in the upper part of the sediments are considered to be the product of intensive erosion which probably occurred in the pluvial epoch in the Late Pleistocene period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号