首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY 1. Biomass and production of picophytoplankton, phytoplankton and heterotrophic bacterioplankton were measured in seven lakes, exhibiting a broad range in water colour because of humic substances. The aim of the study was to identify environmental variables explaining the absolute and relative importance of picophytoplankton. In addition, two dystrophic lakes were fertilised with inorganic phosphorus and nitrogen, to test eventual nutrient limitation of picophytoplankton in these systems.
2. Picophytoplankton biomass and production were highest in lakes with low concentrations of dissolved organic carbon (DOC), and DOC proved the factor explaining most variation in picophytoplankton biomass and production. The relationship between picophytoplankton and lake trophy was negative, most likely because much P was bound in humic complexes. Picophytoplankton biomass decreased after the additions of P and N.
3. Compared with heterotrophic bacterioplankton, picophytoplankton were most successful at the clearwater end of the lake water colour gradient. Phytoplankton dominated over heterotrophic bacteria in the clearwater systems possibly because heterotrophic bacteria in such lakes are dependent on organic carbon produced by phytoplankton.
4. Compared with other phytoplankton, picophytoplankton did best at intermediate DOC concentrations; flagellates dominated in the humic lakes and large autotrophic phytoplankton in the clearwater lakes.
5. Picophytoplankton were not better competitors than large phytoplankton in situations when heterotrophic bacteria had access to a non-algal carbon source. Neither did their small size lead to picophytoplankton dominance over large phytoplankton in the clearwater lakes. Possible reasons include the ability of larger phytoplankton to float or swim to reduce sedimentation losses and to acquire nutrients by phagotrophy.  相似文献   

2.
Pettersson  Kurt  Grust  Karin  Weyhenmeyer  Gesa  Blenckner  Thorsten 《Hydrobiologia》2003,501(1-3):75-81
The effect of submerged macrophytes on interactions among epilimnetic phosphorus, phytoplankton, and heterotrophic bacterioplankton has been acknowledged, but remains poorly understood. Here, we test the hypotheses that the mean summer phytoplankton biomass (chlorophyll a): phosphorus ratios decrease with increased macrophyte cover in a series of nine lakes. Further, we test that both planktonic respiration and bacterioplankton production increase with respect to phytoplankton biomass along the same gradient of increasing macrophyte cover. Increased macrophyte cover was associated with a lower fraction of particulate phosphorus in epilimnia, with total particulate phosphorus declining from over 80% of total phosphorus in a macrophyte free lake to less than 50% in a macrophyte rich lake. Phytoplankton biomass (chlorophyll a) too was lower in macrophyte dominated lakes, despite relatively high levels of total dissolved phosphorus. Planktonic respiration and bacterioplankton production were higher in macrophyte rich lakes than would be expected from phytoplankton biomass alone, pointing to a subsidy of bacterioplankton metabolism by macrophyte beds at the whole lake scale. The results suggest that the classical view of pelagic interactions, which proposes phosphorus determines phytoplankton abundance, which in turn determines bacterial abundance through the production of organic carbon, becomes less relevant as macrophyte cover increases.  相似文献   

3.
4.
An oligotrophic clearwater lake, initially characterized by a pronounced dominance of autotrophic phytoplankton and mostly by one species, the green alga Botryococcus, was subject to additions of dissolved organic carbon in the form of white sugar (sucrose) during two consecutive years. The hypothesis tested was that it is organic carbon per se, and not other possible effects of humic substances, that determines the differences in structure of the planktonic ecosystem between humic and clearwater lakes. The additions of DOC resulted in a significant increase in bacterial biomass and a decrease in the biomass of autotrophic phytoplankton. The biomass of mixotrophic and heterotrophic flagellates instead increased significantly, whereas no effects were found to propagate to higher trophic levels. As a result of the changes among biota, total planktonic biomass also decreased to a level typical of nearby humic lakes. We suggest that it is the carbon component of humic material and its utilization by bacterioplankton that determines the structure and function of the pelagic food web in humic lakes.  相似文献   

5.
Vrede K 《Microbial ecology》2005,49(2):245-256
Limitation of bacterioplankton production by nutrients and temperature was investigated in eight temperate lakes in summer. Six of the lakes were resampled in autumn. The lakes differ in nutrient content, water color, and concentration of dissolved organic carbon. Nutrients (phosphorus, nitrogen, and organic carbon) were added alone and in all possible combinations to filtered lake water inoculated with bacteria from the lake. After incubation for 36–40 h at in situ temperatures (ranging from 7 to 20°C), the response in bacterioplankton production was determined. The effect of increased temperature on bacterioplankton growth was also tested. Bacterioplankton production was often limited by phosphorus alone, organic carbon alone, or the two in combination. Phosphorus limitation of bacterioplankton production was more common in the summer, whereas limitation by organic carbon was more frequently observed in the autumn. There was a close balance between limitation by phosphorus and organic carbon in the epilimnion in the summer. In the hypolimnion in the summer, bacterioplankton growth was primarily phosphorus-limited. The effect of phosphorus additions decreased with increasing phosphorus concentrations in the lakes. However, there were no correlations between the effect of added organic carbon and water color, dissolved organic carbon concentration, or phosphorus concentration. When temperature was low (in the hypolimnion in the summer, and throughout the water column in the autumn) temperature also limited bacterioplankton production. Thus, temperature and inorganic nutrients or organic compounds can limit bacterioplankton growth both alone and simultaneously. However, at low temperatures, temperature is the most important factor influencing bacterioplankton growth.  相似文献   

6.
1. Field data from five unproductive Swedish lakes were used to investigate the occurrence of mixotrophic flagellates in relation to bacterioplankton, autotrophic phytoplankton, heterotrophic flagellates and abiotic environmental factors. Three different sources of data were used: (i) a 3‐year study (1995–97) of the humic Lake Örträsket, (ii) seasonal measurements from five lakes with widely varying dissolved organic carbon (DOC) concentrations, and (iii) whole lake enrichment experiments with inorganic nutrients and organic carbon. 2. Mixotrophic flagellates usually dominated over autotrophic phytoplankton in Lake Örträsket in early summer, when both bacterial production and light levels were high. Comparative data from the five lakes demonstrated that the ratio between the biomasses of mixotrophic flagellates and autotrophic phytoplankton (the M/A‐ratio) was positively correlated to bacterioplankton production, but not to the light regime. Whole lake carbon addition (white sugar) increased bacterial biomass, and production, reduced the biomass of autotrophs by a factor of 16, and increased the M/A‐ratio from 0.03 to 3.4. Collectively, the results indicate that the dominance of mixotrophs among phytoplankton was positively related to bacterioplankton production. 3. Whole lake fertilisation with nitrogen (N) and phosphorus (P) demonstrated that the obligate autotrophic phytoplankton was limited by N. N‐addition increased the biomass of the autotrophic phytoplankton but had no effect on mixotrophic flagellates or bacteria, and the M/A‐ratio decreased from 1.2 to 0.6 after N‐enrichment. Therefore, we suggest that bacteria under natural conditions, by utilising allochthonous DOC as an energy and carbon source, are able to outcompete autotrophs for available inorganic nutrients. Consequently, mixotrophic flagellates can become the dominant phytoplankters when phagotrophy permits them to use nutrients stored in bacterial biomass. 4. In Lake Örträsket, the biomass of mixotrophs was usually higher than the biomass of heterotrophs during the summer. This dominance could not be explained by higher grazing rates among the mixotrophs. Instead, ratios between mixotrophic and heterotrophic biomass (the M/H‐ratio) were positively related to light availability. Therefore, we suggest that photosynthesis can enable mixotrophic flagellates to outcompete heterotrophic flagellates.  相似文献   

7.
1. Two small humic lakes in northern Sweden with concentrations of dissolved organic carbon (DOC) between 15 and 20 mg L–1 were fertilized with inorganic phosphorus (P) and inorganic nitrogen (N), respectively. A third lake was unfertilized and served as a control. In addition to this lake fertilization experiment, data from different regional surveys were used to assess the role of different limiting factors.
2. The P fertilization had no effects on bacterioplankton or phytoplankton, while phytoplankton were significantly stimulated by N fertilization. Inorganic nutrient limitation of bacterioplankton was a function of DOC concentration in water of the investigated region and nutrient-limited bacteria were found only in lakes with DOC concentrations less than around 15 mg L–1
3. The fertilization experiments demonstrated that the DOC-rich experimental lakes contained a bioavailable pool of P that was not utilized to its full potential under natural conditions. The overall mobilization of energy (bacterioplankton plus phytoplankton) in the experimental lakes was restricted by lack of inorganic N.  相似文献   

8.
SUMMARY 1. We tested the influence of ultraviolet radiation (UVR) and shallow stratification on phytoplankton and bacterioplankton from the surface and the base of the mixed layer in two boreal lakes in north-western Ontario, Canada.
2. We measured phytoplankton biomass and production, bacterioplankton production and plankton respiration after transplantation under three solar radiation treatments: ambient radiation (Photosynthetically active radiation (PAR) + ultraviolet-A (UVA) + ultraviolet-B (UVB)), minus UVB (PAR + UVA) and PAR only. We repeated this experiment on three occasions in each lake during the summer.
3. Solar stress (measured as reduced growth and photoinhibition) was generally only found in the 'base phytoplankton' (i.e. originating from the base of the mixed layer). No inhibition of photosynthesis by UVB exposure was found in near-surface phytoplankton. On the other hand, production of near-surface bacterioplankton was reduced following a 4-h UVR exposure but had increased after a 48-h exposure to both UVA and UVB compared with the PAR only treatment.
4. Negative effects of UVR on phytoplankton and bacterioplankton were not ubiquitous. We emphasise the importance of conducting experiments repeatedly, particularly those which test the effects of UVR on different community assemblages from different lakes.  相似文献   

9.
J. Grey  R. I. Jones  D. Sleep 《Oecologia》2000,123(2):232-240
Carbon stable isotope analysis was carried out on zooplankton from 24 United Kingdom lakes to examine the hypothesis that zooplankton dependence on allochthonous sources of organic carbon declines with increasing lake trophy. Stable isotope analysis was also carried out on particulate and dissolved organic matter (POM and DOM) and, in 11 of the lakes, of phytoplankton isolates. In 21 of the 24 lakes, the zooplankton were depleted in 13C relative to bulk POM, consistent with previous reports. δ13C for POM showed relatively little variation between lakes compared to high variation in values for DOM and phytoplankton. δ13C values for phytoplankton and POM converged with increasing lake trophy, consistent with the expected greater contribution of autochthonous production to the total organic matter pool in eutrophic lakes. The difference between δ13C for zooplankton and that for POM was also greatest in oligotrophic lakes and reduced in mesotrophic lakes, in accordance with the hypothesis that increasing lake trophic state leads to greater dependence of zooplankton on phytoplankton production. However, the difference increased again in hypertrophic lakes, where higher δ13C values for POM may have been due to greater inputs of 13C-enriched organic matter from the littoral zone. The very wide variation in phytoplankton δ13C between lakes of all trophic categories made it difficult to detect robust patterns in the variation in δ13C for zooplankton. Received: 2 November 1998 / Accepted: 3 December 1999  相似文献   

10.
1. The biomass and production of picophytoplankton, large phytoplankton and heterotrophic bacterioplankton were measured in humic Lake Örträsket, northern Sweden during four consecutive summers.
2. High flow episodes, carrying fresh dissolved organic carbon (DOC) into the lake, always stimulated heterotrophic bacterial production at the expense of primary production. Primary production never exceeded bacterial production for approximately 20 days after such an episode had replenished epilimnial DOC. We suggest that allochthonous DOC is an energy source that stimulates bacterioplankton that, because of their efficient uptake of inorganic nutrients, are then able to outcompete phytoplankton. After the exhaustion of readily available DOC, phytoplankton were able to dominate epilimnion production in Lake Örträsket.
3. Biomass production was higher when dominated by phytoplankton than by bacterioplankton, despite a similar utilization of nutrients in the epilimnion throughout the summer. We propose that different C : N : P ratios of bacterioplankton and phytoplankton permit the latter to produce more carbon (C) biomass per unit of available inorganic nutrients than bacterioplankton.  相似文献   

11.
Estimations of bacterioplankton production and biomass werecarried out in enclosure experiments during two consecutiveyears (1989 and 1990) in oligotrophic clearwater Lake Njupfatet.The lake was limed in November 1989, and the experiments werecarried out both in 1989 (unlimed) and in 1990 (limed). Bags(3001) were manipulated with inorganic phosphorus and nitrogen,organic carbon, and metazoan zooplankton abundance. Both years,bacterial production was stimulated by inorganic nutrients aloneand in combination with organic carbon. However, the increasein bacterial production when inorganic nutrients were addedalone was much stronger in 1990 than in 1989. In 1989. bacterialproduction increased strongly only when inorganic nutrientsand organic carbon were added together. The phytoplankton communitywas dominated by the cyanobacterium Merismopedia tenuis-simaduring 1989, and the phytoplankton biomass increased only slightlywhen receiving inorganic nutrients. In 1990, when the lake hadbeen limed. M.tenuissima had completely disappeared and thephytoplankton community, dominated by Chrysophyceae and Chlorophyceae,responded strongly to additions of inorganic nutrients. Theincreased phytoplankton productivity in 1990 may have resultedin increased release of organic carbon, and this in turn thatthe carbon limitation of bacterioplankton production decreasedfrom 1989 to 1990. Zooplankton had a positive effect on bacterioplanktonproduction in 1989, but no effect in 1990. The loss of bacterialbiomass approximated 60% of the bacterial production in 1989,while in 1990 it almost equalled the bacterioplankton production.  相似文献   

12.
ABSTRACT We tested whether pelagic light and nutrient availability, metabolism, organic pools and CO2-supersaturation were related to lake size and surrounding forest cover in late summer–autumn measurements among 64 small (0.02–20 ha), shallow seepage lakes located in nutrient-rich, calcareous moraine soils in North Zealand, Denmark. We found a strong implicit scaling to lake size as light availability increased significantly with lake size while nutrient availability, phytoplankton biomass and dissolved organic matter declined. Forest lakes had significantly stronger net heterotrophic traits than open lakes as higher values were observed for light attenuation above and in the water, dissolved organic matter, pelagic community respiration (R) relative to maximum gross primary production (R/GPP) and CO2-supersaturation. Total-phosphorus was the main predictor of phytoplankton biomass (Chl) despite a much weaker relationship than observed in previous studies of larger lakes. Maximum gross primary production increased with algal biomass and decreased with dissolved organic matter, whereas community respiration increased with dissolved organic matter and particularly with gross primary production. These results suggest that exogenous organic matter supplements primary production as an energy source to heterotrophs in these small lakes, and particularly so in forest lakes experiencing substantial shading from the forest and dissolved humic material. This suggestion is supported by 20–30-fold CO2 supersaturation in the surface water of the smallest forest lakes and more than sixfold supersaturation in 75% of all measurements making these lakes among the most supersaturated temperate lakes examined so far.  相似文献   

13.
We measured bacterioplankton (phylotypes detected by fluorescent in situ hybridisation, morphometric forms, abundance and production) in samples collected in summer in the littoral and pelagic zones of 10 subtropical shallow lakes of contrasting area (from 13 to 80,800 ha). Compared to the pelagic zones, the littoral zones were overall characterised by higher macrophyte dominance and lower concentrations of total phosphorus and alkalinity and higher concentrations of dissolved organic carbon (DOC) and humic substances. Similarities of bacterial production and biomass turnover and density of active phylotypes and morphotype proportions were related to similarities in a set of environmental variables (including nutrients, humic substances content, predator density and phytoplankton biomass), and some additionally to lake area. Horizontal heterogeneity in bacterioplankton variables (littoral versus pelagic) increased with lake area. Bacterioplankton biomass and production tended to be lower in the littoral zone than in the pelagic zone despite higher concentrations of DOC and humic substances. A likely explanation is higher predation on bacterioplankton in the littoral zone, although allelophatic effects exerted by macrophytes cannot be excluded. Our results indicate that organic cycling via bacterioplankton may be less efficient in the littoral zone than in the pelagic zone of shallow lakes.  相似文献   

14.
It has been suggested that autochthonous (internally produced) organic carbon and allochthonous (externally produced) organic carbon are utilized by phylogenetically different bacterioplankton. We examined the relationship between the source of organic matter and the structure and function of lake bacterial communities. Differences and seasonal changes in bacterial community composition in two lakes differing in their source of organic matter were followed in relation to environmental variables. We also performed batch culture experiments with amendments of various organic substrates, namely fulvic acids, leachates from algae, and birch and maple leaves. Differences in bacterial community composition between the lakes, analysed by terminal restriction fragment length polymorphism, correlated with variables related to the relative loading of autochthonous and allochthonous carbon (water colour, dissolved organic carbon, nutrients, and pH). Seasonal changes correlated with temperature, chlorophyll and dissolved organic carbon in both lakes. The substrate amendments led to differences in both structure and function, i.e. production, respiration and growth yield, of the bacterial community. In conclusion, our results suggest that the source of organic matter influences community composition both within and among lakes and that there may be a coupling between the structure and function of the bacterial community.  相似文献   

15.
Nelson CE  Carlson CA 《PloS one》2011,6(3):e18320
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes.  相似文献   

16.
The spatial distribution of bacterial abundance and production were measured every 4 h in a recently flooded oligo-mesotrophic reservoir (the Sep Reservoir, Puy-De-Dôme, France), in relation to concentrations of dissolved carbohydrates and combined amino acids. The concentration of dissolved organic matter (DOM) components in the recently flooded Sep Reservoir were higher than those measured in other lakes of similar trophic status. Short-term variations in the bacterial production in this new reservoir appeared cyclical and endogenous to bacterial communities. These results highlight the need for the evaluation of diel changes in bacterial production, if estimation of the daily production rate of bacteria is to be done accurately for a reliable model of carbon flow through bacterioplankton and ultimately through aquatic microbial food webs. Bacterial growth, measured over time and space, did not appear exclusively governed by DOM components from phytoplankton primary production.  相似文献   

17.
Environmental factors accountable for bacterioplankton or phytoplankton biomass dominance were analysed in a confined Mediterranean salt marsh (Empordà Wetlands, NE Spain). Two basins located in the same salt marsh, and with differences in size and catchment's area were compared, during four characteristic situations of the hydroperiod. Since bacterio- or phytoplankton relationships may be affected by other factors such as diel variations or vertical differences in nutrient composition and distribution, high frequency fluctuations due to these factors were also taken into account. Differences in catchment area appeared to be the more plausible explanation of differences in nutrient and organic carbon accumulation among basins, since during confinement basins essentially accumulate the allochthonous nutrient and organic matter supplies that previously entered by runoff. DOC (Dissolved Organic Carbon) favoured the bacterioplankton biomass increase, but also was the main variable significantly affecting phytoplankton biomass. Basins showed marked differences in bacterio- and phytoplankton dominances. Relationships between phytoplankton and bacterioplankton were positive, negative or not significant, depending on the basin and on the period of the year. The phytoplankton mixotrophic capabilities, both phagotrophy and osmotrophy, and their production of UV-screening compounds, as sunscreen, may explain the significant correlation between DOC and phytoplankton biomass, and the significant effect of phytoplankton on bacterioplankton found in these ecosystems.  相似文献   

18.
The effect was determined of organo-mineral detritus (OMD), one of the components of suspended mineral matter in aquatic ecosystems, on the production characteristics of bacterioplankton (bacterial production P b and destruction of organic matter R b, as well as bacterial growth efficiency BGE). The relation was determined between these parameters and the ratio of the content of suspended mineral matter M to the total organic carbon content (M/TOC). More active utilization of organic matter by bacterioplankton in the presence of OMD resulted in its positive effect on specific production characteristics of the phytoplankton.  相似文献   

19.
During three periods of 16 to 25 days, bacterioplankton production, bacterial cell volume, chlorophyll a, CO2 assimilation, and particulate organic carbon were measured in enclosures situated in the eutrophic estuary Roskilde Fjord, Denmark. The enclosures were manipulated with respect to sediment contact and contents of inorganic nutrients, planktivorous fish, and suspension-feeding bivalves. Nutrient enrichment, the presence of suspension feeders, and sediment contact induced pronounced changes in bacterial production, as well as minor changes in bacterial cell volume; however, these effects seemed to be indirect, transmitted via phytoplankton. Bacterial production, measured as [3H]thymidine incorporation, closely followed changes in phytoplankton biomass and production, with time lags of 5 to 10 days. Good correlations of mean bacterioplankton production to chlorophyll a concentration and CO2 assimilation suggested phytoplankton to be the dominating source of bacterial substrate, apparently independent of nutrient stress. Zooplankton >140 μm, bivalves, and sediment seemed to provide insignificant, if any, substrate for bacterioplankton, and benthic suspension feeders seemed not to act as direct competitors for dissolved organic carbon. The bacterioplankton mean cell volume, measured by image analysis, changed seasonally, with the smallest cells during the summer. Within each period, the bacterial cell volume correlated positively to growth rate and negatively to temperature.  相似文献   

20.
《Aquatic Botany》2003,77(2):99-110
Between 1996 and 1998 phytoplanktonic primary production and bacterioplankton production were measured monthly at five sampling stations in the lower Kis-Balaton reservoir. The open water area of the reservoir was rich in phytoplankton and had hypertrophic characteristics, but inside the reed stand (80% of the surface area) phytoplankton biomass and production were substantially (30–50 times) lower. The algal removal efficiency of the lower Kis-Balaton reservoir was 96%. The reservoir had a considerably smaller effect on bacterioplankton removal than on the phytoplankton. The decrease of biomass and production of bacterioplankton in the through-flowing water was approximately 60%. Inside the reed stand the biomass and the production of planktonic bacteria exceeded that of the phytoplankton by several times, suggesting that the release of biodegradable dissolved organic (humic) substances from macrophytes stimulated the metabolism of bacterioplankton. The significant reduction of phytoplankton inside the dense reed stand was primarily the result of the shading effect of the reeds. In the open water area a shading experiment demonstrated that a 1-week residence period for planktonic algae in the reed-covered area was sufficient for their complete elimination. The decomposition of planktonic algae, reed material and the lack of primary production inside the reed stand created oxygen-deficient and phosphorus-rich conditions during the vegetative period. These results suggest that reed-covered water bodies can effectively retain suspended solids and planktonic algae, but because of decomposition processes they cannot retain biologically-available phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号