首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following the European Water Framework Directive, this study aims to be the first step to (i) identify diatom type assemblages in unpolluted streams in NW Italy, and (ii) find which ecological factors explain most of the variation. To achieve this, we collected physical, chemical and benthic community data from four streams in NW Italy from 2001 to 2004, for a total of 72 samples. All sampling sites were between 200 m a.s.l. and 800 m a.s.l., but differed in the dominant lithological substrate, i.e. alluvial or siliceous. Relationships between diatom communities and environmental factors were examined using canonical correspondence analysis (CCA), while Indicator Species Analysis was used to define characterizing species and accompanying species of three environmental groups identified by CCA: (1) high water quality and medium saline content, (2) high water quality and low saline content, (3) poor water quality. The diatom assemblages of the three groups of sites differed significantly, as shown by the Multi-Response Permutation Procedure. There were strong correlations between diatoms and environmental factors, especially chlorides (also highly correlated with sulphates and carbonate hardness), nitrate concentration and conductivity. The group 1 assemblage was typical of the alluvial Alpine streams with medium saline content and was characterized by mostly oligosaprobic/β-mesosaprobic taxa such as Cymbella affinis, Diatoma ehrenbergii and Staurosira pinnata. The species assemblage found in the siliceous Alpine rivers with good water quality make them suitable reference sites for a benthic diatom community. Electronic Supplementary Material Supplementary material is available for this article at and accessible for authorised users Handling editor: K. Martens  相似文献   

2.
Diatom communities along stream longitudinal gradients   总被引:2,自引:0,他引:2  
1. Summer diatom communities on artificial substrates were sampled weekly for a month in three first- to sixth-order tributaries of the Kentucky River to determine how community structure varied with stream size. 2. Diatom cell abundances were generally higher in the headwaters. Species diversity increased in a downstream direction in two of the streams, and in an upstream direction in the third. However, diversity in general seemed more closely related to current regimes than to stream size per se, with highest species diversity at intermediate current velocities. 3. Variation in diatom accumulation rates was greater in downstream communities than in the headwater assemblages of two streams, suggesting that downstream communities may experience greater fluctuations in abundance, at least under low-flow conditions. 4. Patterns of species distributions suggested a relationship between morphological growth forms (guilds) and stream size, as well as the influence of current. Achnanthes spp., Eunotia spp., erect, and stalked taxa were more commonly associated with headwater assemblages. Filamentous and centric diatoms occurred with greater frequency downstream.  相似文献   

3.
Stream assemblages are structured by a combination of local (environmental filtering and biotic interactions) and regional factors (e.g., dispersal related processes). The relative importance of environmental and spatial (i.e., regional) factors structuring stream assemblages has been frequently assessed in previous large-scale studies, but biotic predictors (potentially reflecting local biotic interactions) have rarely been included. Diatoms may be useful for studying the effect of trophic interactions on community structure since: (1) a majority of experimental studies shows significant grazing effects on diatom species composition, and (2) assemblages can be divided into guilds that have different susceptibility to grazing. We used a dataset from boreal headwater streams in south-central Sweden (covering a spatial extent of ∼14000 km2), which included information about diatom taxonomic composition, abundance of invertebrate grazers (biotic factor), environmental (physicochemical) and spatial factors (obtained through spatial eigenfunction analyses). We assessed the relative importance of environmental, biotic, and spatial factors structuring diatom assemblages, and performed separate analyses on different diatom guilds. Our results showed that the diatom assemblages were mainly structured by environmental factors. However, unique spatial and biological gradients, specific to different guilds and unrelated to each other, were also evident. We conclude that biological predictors, in combination with environmental and spatial variables, can reveal a more complete picture of the local vs. regional control of species assemblages in lotic environments. Biotic factors should therefore not be overlooked in applied research since they can capture additional local control and therefore increase accuracy and performance of predictive models. The inclusion of biotic predictors did, however, not significantly influence the unique fraction explained by spatial factors, which suggests low bias in previous assessments of unique regional control of stream assemblages.  相似文献   

4.
Although benthic diatoms are used to assess river water quality, there are few data on the rate at which diatom assemblages react to changes in water quality. The aim of this study was to assess the reaction time of diatoms and to discuss the changes occurring during water quality improvement on the basis of their autecological characteristics. In order to simulate this improvement, diatom-dominated biofilms grown on artificial sandstone substrata were transferred from several polluted rivers to an unpolluted river. They were sampled three times: before transfer and 1 and 2 months after transfer. The ecology and growth-forms of the taxa explained most of the changes in species composition observed during the experiment. Adnate diatoms gradually replaced motile and stalked taxa. Gomphonema parvulum, a stalked diatom positioned vertically in the biofilm, is adapted for light and space competition in high-density algal biofilms. When transferred to an unpolluted site, this growth-form is less competitive and does not tolerate the high grazing pressure. Fistulifera saprophila is a single celled motile diatom, living in organic matrices. When the artificial substrata were transferred to the unpolluted site, this particular ecological niche disappeared quickly. On the other hand, Achnanthidium minutissimum, which is considered to be cosmopolitan and an early colonizer, increased during the first month of transfer and then decreased. It was gradually replaced by A. biasolettianum, which was the taxon best suited to this pristine stream. The changes observed differed between treatments depending on the species composition and architecture of the biofilms. In particular, biofilms dominated by stalked and motile diatoms were more quickly modified than those dominated by small motile diatoms. The diatom index reflects these changes, and its values showed that about 60 days following a water quality improvement were necessary for transferred diatom assemblages to reach diatom index values similar as those at the unpolluted river.  相似文献   

5.
The Oregon Coast Range, rich in natural resources, is under increasing pressure from rapid development. The purpose of this study was to examine diatom species patterns in relation to environmental variables in streams of this region. Diatoms, water quality, physical habitat and watershed characteristics were assessed for 33 randomly selected stream sites. Watershed size, elevation, geology, vegetation and stream morphology varied substantially among sites. Streams were characterized by dilute water chemistry and a low percent of fine substrate. A total of 80 diatom taxa were identified. Taxa richness was low throughout the region (median 15, range 10–26). Assemblages were dominated by two adnate species, Achnanthidium minutissimum and Achnanthes pyrenaicum. Diatoms sensitive to organic pollution dominated the assemblages at all sites (median 85%). Non-metric multidimensional scaling (NMDS) and correlational analysis showed quantitative relationships between diatom assemblages and environmental variables. NMDS axes were significantly correlated with watershed area, watershed geology, conductivity, total nitrogen, total solids and stream width. Diatom-based site classification (Two-way Indicators Species Analysis, (TWINSPAN)) yielded 4 discrete groups that displayed weak correlations with environmental variables. When stream sites were classified by dominant watershed geology, overall diatom assemblages between groups were significantly different (Analysis of Similarity (ANOSIM) global R = 0.19, p < 0.05). Our results suggest that streams in the coastal region are in relatively good condition. High natural variability in stream conditions in the Oregon Coast Range ecoregion may obscure quantitative relationships between environmental variables and diatom assemblages. A bioassessment protocol that classifies sites by major landscape variables and selects streams along the major human disturbance gradient might allow for detection of early signs of human disturbance in environmentally heterogeneous regions, such as the Pacific Northwest.  相似文献   

6.
Implementation of the European Union Water Framework Directive and associated national guidelines has emphasized the value of using biota, such as epilithic diatoms in streams, as indicators of water quality. However, guidelines for evaluating diatom samples have been established without explicitly evaluating their statistical robustness. We used epilithic diatom samples from 73 streams in northern Sweden and simulated the effects of variations in the counting sum size and taxonomic resolution of classifications for two indices indicating pollution (Indice de Polluo-sensibilité Spécifique, IPS) and acidity (acidity index for diatoms, ACID). Instead of the stipulated 400, we found that a count sum of 40 diatom valves for 50 streams, and 80 valves for 60 streams, would have been sufficient to obtain the same IPS index classification. The ACID index is more sensitive to count sum reductions, since the same classification would only have been obtained for 12 streams with 40 counted diatom valves or 24 streams with a count of 80 valves. Excluding rare taxa had negligible effects on the IPS and ACID indices. Excluding taxa occurring with less than 1.0% frequency affected the IPS classification of only one stream, and excluding taxa with less than 2.5% and 5.0% frequencies affected those of just one and no streams, respectively. The ACID index was affected for none, five, and 12 streams, respectively. At least in relatively unpolluted regions such as northern Sweden, our simulations suggest that a simplified methodological approach with site-specific counting sum sizes and reduced taxonomical resolution could be adopted, taking into account the way sites are classified in relation to established class boundaries. The simplified method is a step forward in improving the cost efficiency for stream monitoring, as costs of diatom analysis to obtain identical IPS and ACID classifications of our streams could be reduced considerably. Before the simplified method can be widely adopted, further simulations including regions with a higher proportion of polluted streams are required.  相似文献   

7.
8.
Triest  Ludwig  Lung’ayia  Henri  Ndiritu  George  Beyene  Abebe 《Hydrobiologia》2012,695(1):343-360
We investigated epilithic diatoms in rivers draining to the Nyanza Bay in Lake Victoria (Kenya) with the aim of determining environmental gradients in the assemblages and testing the usefulness of diatom metrics from temperate regions. Spatial and temporal variations of assemblages were studied in 12 sites of three rivers. Kibos, Nyando, and Kisat rivers contained 224 diatom taxa collected on seven sampling occasions over 4 years. Species richness showed a marginal decrease downstream and was the lowest at sites with high conductivity and ammonia–nitrogen levels. Two-Way Indicator Species Analysis and Canonical Correspondence Analysis revealed two major groups of river sites. Conductivity, alkalinity, turbidity, dissolved oxygen, and silicate were the most important variables influencing species distribution. Ecological diatom metrics of temperate regions and the Specific Pollution sensitivity Index showed good relationships with environmental variables. Both diatom assemblages and averaged indicator values were strong in predicting sites of ecological deterioration and in differentiating an upstream site of better quality (drinking water supply of Kisumu), thereby confirming epilithic diatoms as suitable water quality indicators in equatorial rivers. The use of metrics initially designed for temperate rivers, however, appears less valuable in good quality tropical rivers because potential indicators are not considered.  相似文献   

9.
Aim We examined the relative contributions of spatial gradients and local environmental conditions to macroinvertebrate assemblages of boreal headwater streams at three hierarchical extents: bioregion, ecoregion and drainage system. We also aimed to identify the environmental variables most strongly related to assemblage structure at each study scale, and to assess how the importance of these variables is related to regional context and spatial structuring at different scales. Location Northern Finland ( 62 – 68° N, 25–32° E). Methods Variation in macroinvertebrate data was partitioned using partial canonical correspondence analysis into components explained by spatial variables (nine terms from the cubic trend surface regression), local environmental variables (15 variables) and spatially structured environmental variation. Results The strength of the relationship between assemblage structure and local environmental variables increased with decreasing spatial extent, whereas assemblage variation related to spatial variables and spatially structured environmental variation showed the opposite pattern. At the largest extents, spatial variation was related to latitudinal gradients, whereas spatial autocorrelation among neighbouring streams was the likely mechanism creating spatial structure within drainage systems. Only stream size and water acidity were consistently important in explaining assemblage structure at all study scales, while the importance of other environmental variables was more context‐dependent. Main conclusions The importance of local environmental factors in explaining macroinvertebrate assemblage structure increases with decreasing spatial extent. This scale‐related pattern is not caused solely by changes in study extent, however, but also by variable sample sizes at different regional extents. The importance of environmental gradients is context‐dependent and few factors are likely to be universally important correlates of macroinvertebrate assemblage structure. Finally, our results suggest that bioassessment should give due attention to spatial structuring of stream assemblages, because important assemblage gradients may not only be related to local factors but also to biogeographical constraints and neighbourhood dispersal processes.  相似文献   

10.
Diatoms are commonly and frequently used as water quality indicators, but only a few studies have been done to evaluate the importance of littoral, contemporary diatoms as bioindicators. This study aims to determine the main predictors of diatom community composition from 73 Swedish lakes. Canonical correspondence analysis (CCA) revealed pH, phosphate, nitrite/nitrate levels, longitude and percentage of forest in the catchment to be the most important factors of 51 environmental variables for structuring diatom assemblages. Cluster analysis separated the lakes into three groups based on the diatom community composition. Lakes belonging to these groups were characterised as: (1) acidic, nutrient-poor; (2) circumneutral, nutrient-poor and (3) alkaline, nutrient-rich, according to the results of a discriminant function analysis and dominant diatom taxa revealed by similarity percentage analysis. Ecological guilds according to growth morphology and the ability of nitrogen-fixation were assigned to all diatom taxa. All three lake groups exhibited a distinct guild composition. Nitrogen-fixing diatoms were found in nutrient-rich lakes, only. Our results indicate that taxonomical composition of littoral diatom assemblages can be applied in the assessment of nutrient and acidity status of Swedish lakes. Differences in distribution of the ecological guilds were connected to several environmental factors such as nutrients, light and grazing; their application in assessment of trophic status of lakes is therefore precarious.  相似文献   

11.
It is unclear whether differentiating live and dead diatoms would enhance the accuracy and precision of diatom-based stream bioassessment. We collected benthic diatom samples from 25 stream sites in the Northern Oregon Coast ecoregion. We counted live diatoms (cells with visible chloroplasts) and then compared the counts with those generated using the conventional method (clean counts). Non-metric multidimensional scaling (NMDS) showed that the diatom assemblages generated from the two counts were overall similar. The relationships between the two diatom assemblages (summarized as NMDS ordination axes) and the environmental variables were also similar. Both assemblages correlated well with in-stream physical habitat conditions (e.g., channel dimensions, substrate types, and canopy cover). The conventional diatom method provides taxonomic confidence while the live diatom count offers ecological reliability. Both methods can be used in bioassessment based on specific assessment objectives. Handling editor: J. Saros  相似文献   

12.
Community response to environmental gradients operating at hierarchical scales was assessed in studies of benthic diatoms, macroinvertebrates and fish from 44 stream sites in the New York City watershed. Hierarchical cluster analysis (TWINSPAN) of diatoms and fish partitioned the study sites into four groups, i.e., acid streams, reservoir outlets and wetland streams, large eutrophic streams, and small eutrophic streams; macroinvertebrate TWINSPAN distinguished an additional group of silty eutrophic streams. The correspondence among the three assemblage TWINSPAN groupings was moderate, ranging from 51 to 57%. The similarity across the four major group types was the highest among large eutrophic stream and acid stream assemblages, and the lowest among small eutrophic stream assemblages. Stepwise discriminant function analysis revealed that environmental factors discriminated most effectively the diatom grouping and least effectively the fish grouping. The best environmental predictors for diatom and macroinvertebrate grouping were conductance and percent surface water, while population density was most powerful in separating the fish groups. Carbaryl was the only pesticide that correlated with macroinvertebrate grouping. Partial redundancy analyses suggested a differential dependence of freshwater communities on the scale of the environmental factors to which they respond. The role of small‐scale habitat and habitatland cover/land use interaction steadily increased across the diatom, macroinvertebrate, and fish assemblages, whereas the effect of large‐scale land cover/land use declined.  相似文献   

13.
Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.  相似文献   

14.
1. Many studies have addressed either community models (e.g. Clementsian versus Gleasonian gradients) or assembly rules (e.g. nestedness, checkerboards) for higher plant and animal communities, but very few studies have examined different non‐random distribution patterns simultaneously with the same data set. Even fewer studies have addressed generalities in the distribution patterns of unicellular organisms, such as diatoms. 2. We studied non‐randomness in the spatial distribution and community composition of stream diatoms. Our data consisted of diatom surveys from 47 boreal headwater streams and small rivers in northern Finland. Our analytical approaches included ordinations, cluster analysis, null model analyses, and associated randomisation tests. 3. Stream diatom communities did not follow discrete Clementsian community types, where multiple species occur exclusively in a single community type. Rather, diatom species showed rather individualistic responses, leading to continuous Gleasonian variability in community composition. 4. Although continuous variability was the dominating pattern in the data, diatoms also showed significant nestedness and less overlap in species distribution than expected by chance. However, these patterns were probably only secondary signals from species’ individualistic responses to the environment. 5. Although unicellular organisms, such as diatoms, differ from multicellular organisms in several biological characteristics, they nevertheless appear to show largely similar non‐random distribution patterns previously found for higher plants and metazoans.  相似文献   

15.
1. Two types of artificial neural networks procedures were used to define and predict diatom assemblage structures in Luxembourg streams using environmental data. 2. Self‐organising maps (SOM) were used to classify samples according to their diatom composition, and multilayer perceptron with a backpropagation learning algorithm (BPN) was used to predict these assemblages using environmental characteristics of each sample as input and spatial coordinates (X and Y) of the cell centres of the SOM map identified as diatom assemblages as output. Classical methods (correspondence analysis and clustering analysis) were then used to identify the relations between diatom assemblages and the SOM cell number. A canonical correspondence analysis was also used to define the relationship between these assemblages and the environmental conditions. 3. The diatom‐SOM training set resulted in 12 representative assemblages (12 clusters) having different species compositions. Comparison of observed and estimated sample positions on the SOM map were used to evaluate the performance of the BPN (correlation coefficients were 0.93 for X and 0.94 for Y). Mean square errors of 12 cells varied from 0.47 to 1.77 and the proportion of well predicted samples ranged from 37.5 to 92.9%. This study showed the high predictability of diatom assemblages using physical and chemical parameters for a small number of river types within a restricted geographical area.  相似文献   

16.
Diatoms as indicators of water quality in some English urban lakes   总被引:1,自引:0,他引:1  
SUMMARY. 1. The paper describes diatom communities from a series of linked urban lakes in relation to water chemistry and uses multivariate statistical techniques to show how indicator groups can he defined.
2. Diatoms are classified into ecological groups using two-way species indicator analysis (TWINSPAN). Each ecological group is associated with a specific range of water-quality conditions. The headwater stream environments are differentiated from the lake habitats at level 1. At level 2 of TWINSPAN. the sampling sites are grouped into five ecological groups, according to their water chemistry and irrespective of the time of year.
3. Detrended correspondence analysis (DCA) and principal components analysis (PCA) provide two statistically independent methods of assessing the environmental gradients along which the ecological groups are distributed. The most important physico-chemical parameters are total hardness, specific conductance and pH, followed by phosphates and nitrates.
4. Ecological groups I-V correspond to an environmental gradient ranging from the forested headwaters, which are acidic, of low specific conductance, total hardness and nutrient content, through the urban lakes, which are alkaline and of relatively high total hardness, specific conductance and nutrient content.
5. Twelve site groups are identified at level 3 of TWINSPAN, each of which corresponds to a narrower range of water-quality conditions within the ecological groupings. A specific diatom assemblage is associated with each site group.
6. Benthic diatoms form an integral part of the diatom assemblages found in the water column and this is identified as a topic for further study.  相似文献   

17.
This paper deals with the distribution of diatoms in the surface sediments of the Skagerrak and the Kattegat and its correlation with the spatial changes of eight environmental variables. Eigenvalues and the values of the species-environmental correlation show that the measured environment variables account for the major gradients of diatom composition. The results of forward selection of the environmental variables and Monte Carlo permutation tests of statistical significance, together with canonical coefficients and intra-set correlations between environmental variables and the axes, show that summer and winter surface salinities are the most important environmental factors affecting diatom distribution in this area. Five diatom assemblages are distinguished in the Skagerrak and the Kattegat. The distribution of these assemblages is clearly correlated with the strong variations in salinity, and in particular with surface salinities during summer and winter.  相似文献   

18.
In the Sorbas basin, the diatomites represent one of the main sedimentary components of the Messinian together with its two marginal carbonate platforms and the central gypsum deposits. Several vertical sections were taken in the infra-gypsum diatomites from successively more distal paleogeographic areas, ranging from the reef slopes (Cariatiz) to the basin (Los Yesos, Los Molinos). A total of 88 diatom species were determined: 50 centric and 38 pennate. Characteristic assemblages were defined for each category type, revealing ecological variations. In the three sections, plankton forms represent 90 % of the diatoms, with oceanic forms dominating the meroplanktonic and neritic. Nevertheless, some levels clearly indicate a coastal environment, attesting to the carbonate platform influence which progrades toward the basin. The diatom assemblages are relatively homogeneous throughout the three sections, indicating that, before gypsum deposition, the basin was still substantially open to the ocean, with waters sufficiently warm to allow coral reef development. Nevertheless, the basin might also have experienced episodes of colder Atlantic influences.  相似文献   

19.
Small soda lakes represent one of the most vulnerable ecosystem types due to their high hydrological sensitivity to climate change and anthropogenic interventions. Since diatoms are excellent bioindicators, determining the β-diversity and the structuring dynamics of diatom metacommunities can provide valuable information for conservation planning for soda pans. In this study, two diatom metacommunities were surveyed monthly during a one-year period from distinct regions of the Carpathian basin: the Fert?-Hanság National Park (FH) between 2013 and 2014, and the Danube-Tisza Interfluve (DT) between 2014 and 2015. We explored whether β-diversity of diatom assemblages in the two regions is enhanced by species turnover or nestedness (related to richness differences) and investigated the role of deterministic and stochastic processes in shaping β-diversity patterns. Furthermore, we evaluated the contribution of environmental variables, geographic distance and temporal variation to community structure. High β-diversity (>90%) was revealed for both metacommunities, and was maintained primarily by species turnover. Within the metacommunity of the DT where the natural hydrological cycle of soda pans is not disturbed, diatom communities assembled mainly due to the selection force of environment at a spatiotemporal scale. In the soda pans located in the habitat reconstruction area of the FH, besides species-sorting, significant temporal variation in community structure appeared as a result of water management and periodic water supply. Our results point to the need for a conservation management strategy which maintains the natural hydrological regime of small saline lakes, and therefore their habitat heterogeneity which is of high conservation value.  相似文献   

20.
The objective of this study was to compare the responses of diatoms, macroinvertebrates and fish to agriculture, urbanization and mining in the Manyame River Basin. Water quality sampling and benthic diatom, macroinvertebrate and fish community data were collected in April (end of the rain season) and September (dry season) 2013 at 44 sampling stations spread out across three land-use categories: commercial agricultural, communal agricultural and urban-mining areas. Commercial agricultural areas were relatively pristine as they were characterized by mature deciduous riparian forest strips which acted as riparian buffers thus protecting water resources from nonpoint source pollution. In communal agricultural areas a combination of poor agricultural practices (stream bank cultivation, overgrazing, soil erosions) and high human population densities had negative effects on water quality of streams draining these areas. Streams in urban-mining areas were highly stressed, being impacted primarily by physical habitat degradation and both point and nonpoint sources of pollution. A suite of environmental variables that varied with land-use pattern was assessed to find the combination of variables that best explained patterns of biota community composition. Community metrics i.e. the Trophic Diatom Index (TDI) based on diatoms, the South African Scoring system version 5 (SASS 5) based on macroinvertebrates and the Fish Assemblage Integrity Index (FAII) were used to determine the ecological status of study streams in relation to human-induced stressors. Data were also subjected to multivariate statistical techniques; canonical correspondence analysis (CCA), mantel test and cluster analysis to determine environmental gradients along which the diatom, macroinvertebrate and fish assemblages were distributed as well as to elucidate hypothesized differences in response to stressors among communities per land-use type. Using CCA, we assessed the individual importance of a set of environmental variables on each biotic community structure. ANOVA, showed a significant difference (p < 0.05) in physical and chemical variables among commercial agricultural, communal agricultural and urban-mining sampling stations with no significant differences (p > 0.05) between the 2 sampling periods. Based on CCAs carried out using individual variables, the strengths of relationships between diatoms and macroinvertebrates was generally high for nutrient levels, organic and metal pollution and other variables. However, fish assemblages showed a relatively low association with all water quality variables in the study; this might be explained by the high abundance of omnivores and air breathers which are able to tolerate a variety of environmental conditions. These patterns were also confirmed by the mantel test as well as the other CCAs carried out to investigate the simultaneous effects of environmental variables. These findings indicate that diatoms are more powerful indicators in accessing ecological stream/river quality and have potential for application in routine monitoring programs in tropical streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号