首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian cytosolic and mitochondrial thioredoxin reductases are essential selenocysteine-containing enzymes that control thioredoxin functions. Thioredoxin/glutathione reductase (TGR) is a third member of this enzyme family. It has an additional glutaredoxin domain and shows highest expression in testes. Herein, we found that human and several other mammalian TGR genes lack any AUG codons that could function in translation initiation. Although mouse and rat TGRs have such codons, we detected protein sequences upstream of them by immunoblot assays and direct proteomic analyses. Further gene engineering and expression analyses demonstrated that a CUG codon, located upstream of the sequences previously thought to initiate translation, is the actual start codon in mouse TGR. The use of this codon relies on the Kozak consensus sequence and ribosome-scanning mechanism. However, CUG serves as an inefficient start codon that allows downstream initiation, thus generating two isoforms of the enzyme in vivo and in vitro. The use of CUG evolved in mammalian TGRs, and in some of these organisms, GUG is used instead. The newly discovered longer TGR form shows cytosolic localization in cultured cells and is expressed in spermatids in mouse testes. This study shows that CUG codon is used as an inefficient start codon to generate protein isoforms in mouse.  相似文献   

2.
The rational design of theoretical minimal RNA rings predetermines AUG as the universal start codon. This design maximizes coded amino acid diversity over minimal sequence length, defining in silico theoretical minimal RNA rings, candidate ancestral genes. RNA rings code for 21 amino acids and a stop codon after three consecutive translation rounds, and form a degradation-delaying stem-loop hairpin. Twenty-five RNA rings match these constraints, ten start with the universal initiation codon AUG. No first codon bias exists among remaining RNA rings. RNA ring design predetermines AUG as initiation codon. This is the only explanation yet for AUG as start codon. RNA ring design determines additional RNA ring gene- and tRNA-like properties described previously, because it presumably mimics constraints on life's primordial RNAs.  相似文献   

3.
4.
5.
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5′-untranslated region (5′-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chloroplast atpB mRNAs contain no SD-like sequence and are U-rich in the 5′-UTR (−20 to −1 with respect to the start codon). In vitro translation assays with mutated mRNAs revealed that an unstructured sequence encompassing the start codon, the AUG codon and its context are required for translation. UV crosslinking experiments showed that a 50 kDa protein (p50) binds to the 5′-UTR. Insertion of an additional initiation region (SD-sequence and AUG) in the 5′-UTR, but not downstream, arrested translation from the authentic site; however, no inhibition was observed by inserting only an AUG triplet. We hypothesize for translational initiation of the atpB mRNA that the ribosome enters an upstream region, slides to the start codon and forms an initiation complex with p50 and other components.  相似文献   

6.
Human T-cell lymphotropic virus type I (HTLV-I) double-spliced mRNA exhibits two GUG and two CUG codons upstream to, and in frame with, the sequences encoding Rex and Tax regulatory proteins, respectively. To verify whether these GUG and CUG codons could be used as additional initiation codons of translation, two chimeric constructs were built for directing the synthesis of either Rex–CAT or Tax–CAT fusion proteins. In both cases, the CAT reporter sequence was inserted after the Tax AUG codon and in frame with either the Rex or Tax AUG codon. Under transient expression of these constructs, other proteins of higher molecular mass were synthesized in addition to the expected Rex–CAT and Tax–CAT proteins. The potential non-AUG initiation codons were exchanged for either an AUG codon or a non-initiation codon. This allowed us to demonstrate that the two GUG codons in frame with the Rex coding sequence, and only the second CUG in frame with the Tax coding sequence, were used as additional initiation codons. In HTLV-I infected cells, two Rex and one Tax additional proteins were detected that exhibited molecular mass compatible with the use of the two GUG and the second CUG as additional initiation codons of translation. Comparison of the HTLV-I proviral DNA sequence with that of other HTLV-related retroviruses revealed a striking conservation of the three non-AUG initiation codons, strongly suggesting their use for the synthesis of additional Rex and Tax proteins.  相似文献   

7.
8.
9.
We determined the in vivo translational efficiency of 'unleadered' lacZ compared with a conventionally leadered lacZ with and without a Shine–Dalgarno (SD) sequence in Escherichia coli and found that changing the SD sequence of leadered lacZ from the consensus 5'-AGGA-3' to 5'-UUUU-3' results in a 15-fold reduction in translational efficiency; however, removing the leader altogether results in only a twofold reduction. An increase in translation coincident with the removal of the leader lacking a SD sequence suggests the existence of stronger or novel translational signals within the coding sequence in the absence of the leader. We examined, therefore, a change in the translational signals provided by altering the AUG initiation codon to other naturally occurring initiation codons (GUG, UUG, CUG) in the presence and absence of a leader and find that mRNAs lacking leader sequences are dependent upon an AUG initiation codon, whereas leadered mRNAs are not. This suggests that mRNAs lacking leader sequences are either more dependent on perfect codon–anticodon complementarity or require an AUG initiation codon in a sequence-specific manner to form productive initiation complexes. A mutant initiator tRNA with compensating anticodon mutations restored expression of leadered, but not unleadered, mRNAs with UAG start codons, indicating that codon–anticodon complementarity was insufficient for the translation of mRNA lacking leader sequences. These data suggest that a cognate AUG initiation codon specifically serves as a stronger and different translational signal in the absence of an untranslated leader.  相似文献   

10.
Specific interaction between the start codon, 5’-AUG-3’, and the anticodon, 5’-CAU-3’, ensures accurate initiation of translation. Recent studies show that several near-cognate start codons (e.g. GUG and CUG) can play a role in initiating translation in eukaryotes. However, the mechanism allowing initiation through mismatched base-pairs at the ribosomal decoding site is still unclear at an atomic level. In this work, we propose an extended simulation-based method to evaluate free energy profiles, through computing the distance between each base-pair of the triplet interactions involved in recognition of start codons in eukaryotic translation pre-initiation complex. Our method provides not only the free energy penalty for mismatched start codons relative to the AUG start codon, but also the preferred pathways of transitions between bound and unbound states, which has not been described by previous studies. To verify the method, the binding dynamics of cognate (AUG) and near-cognate start codons (CUG and GUG) were simulated. Evaluated free energy profiles agree with experimentally observed changes in initiation frequencies from respective codons. This work proposes for the first time how a G:U mismatch at the first position of codon (GUG)-anticodon base-pairs destabilizes the accommodation in the initiating eukaryotic ribosome and how initiation at a CUG codon is nearly as strong as, or sometimes stronger than, that at a GUG codon. Our method is expected to be applied to study the affinity changes for various mismatched base-pairs.  相似文献   

11.
The context requirements for recognition of an initiator codon were evaluated in vitro by monitoring the relative use of two AUG codons that were strategically positioned to produce long (pre-chloramphenicol acetyl transferase [CAT]) and short versions of CAT protein. The yield of pre-CAT initiated from the 5'-proximal AUG codon increased, and synthesis of CAT from the second AUG codon decreased, as sequences flanking the first AUG codon increasingly resembled the eucaryotic consensus sequence. Thus, under prescribed conditions, the fidelity of initiation in extracts from animal as well as plant cells closely mimics what has been observed in vivo. Unexpectedly, recognition of an AUG codon in a suboptimal context was higher when the adjacent downstream sequence was capable of assuming a hairpin structure than when the downstream region was unstructured. This finding adds a new, positive dimension to regulation by mRNA secondary structure, which has been recognized previously as a negative regulator of initiation. Translation of pre-CAT from an AUG codon in a weak context was not preferentially inhibited under conditions of mRNA competition. That result is consistent with the scanning model, which predicts that recognition of the AUG codon is a late event that occurs after the competition-sensitive binding of a 40S ribosome-factor complex to the 5' end of mRNA. Initiation at non-AUG codons was evaluated in vitro and in vivo by introducing appropriate mutations in the CAT and preproinsulin genes. GUG was the most efficient of the six alternative initiator codons tested, but GUG in the optimal context for initiation functioned only 3 to 5% as efficiently as AUG. Initiation at non-AUG codons was artifactually enhanced in vitro at supraoptimal concentrations of magnesium.  相似文献   

12.
A unique genetic selection was devised at the HIS4 locus to address the mechanism of translation initiation in Saccharomyces cerevisiae and to probe sequence requirements at the normal translational initiator region that might participate in ribosomal recognition of the AUG start codon. The first AUG codon at the 5' end of the HIS4 message serves as the start site for translation, and the -3 and +4 nucleotide positions flanking this AUG (AXXAUGG) correspond to a eucaryotic consensus start region. Despite this similarity, direct selection for mutations that reduce or abolish ribosomal recognition of this region does not provide any insight into the functional nature of flanking nucleotides. The only mutations identified that affected recognition of this region were alterations in the AUG start codon. Among 150 spontaneous isolates, 26 were shown to contain mutations in the AUG start codon, including all +1 changes (CUG, GUG, and UUG), all +3 changes (AUA, AUC, and AUU), and one +2 change (ACG). These seven mutations of the AUG start codon, as well as AAG and AGG constructed in vitro, were assayed for their ability to support HIS4 expression. No codon other than AUG is physiologically relevant to translation initiation at HIS4 as determined by growth tests and quantitated in his4-lacZ fusion strains. These data and analysis of other his4 alleles are consistent with a mechanism of initiation at HIS4 as proposed in the scanning model whereby the first AUG codon nearest the 5' end of the message serves as the start site for translation and points to the AUG codon in S. cerevisiae as an important component for ribosomal recognition of the initiator region.  相似文献   

13.
The araB and araC genes of Salmonella typhimurium have been cloned onto the plasmid pBR322. Restriction analysis and subcloning of restriction fragments localized these genes to a 4.4 kb DNA fragment. Complementation analysis revealed that the cloned araB and araC genes from S. typhimurium complemented araB and araC mutant strains of Escherichia coli. Conversely, cloned araB and araC genes from E. coli complemented araB and araC mutant strains of S. typhimurium. The DNA sequences was determined for the S. typhimurium araB and araC controlling region and for the initially translated portions of these genes. The nucleotide sequence of the araB promoter was 87% homologous with the same region in E. coli and contained no deletions or insertions relative to the E. coli sequence. The presumed AUG codon corresponding to the amino terminus of the S. typhimurium araC protein was in the same location as in E. coli. There was, however, considerable divergence from the E. coli sequence preceding the translation start site. The nucleotide sequence of the initial 237 bp in the open reading frame of the S. typhimurium araC gene was 78% homologous with the same sequence in E. coli. By comparison, the amino acid sequence for this region was 91% conserved.  相似文献   

14.
The translational roles of the Shine-Dalgarno sequence, the initiation codon, the space between them, and the second codon have been studied. The Shine-Dalgarno sequence UAAGGAGG initiated translation roughly four times more efficiently than did the shorter AAGGA sequence. Each Shine-Dalgarno sequence required a minimum distance to the initiation codon in order to drive translation; spacing, however, could be rather long. Initiation at AUG was more efficient than at GUG or UUG at each spacing examined; initiation at GUG was only slightly better than UUG. Translation was also affected by residues 3' to the initiation codon. The second codon can influence the rate of initiation, with the magnitude depending on the initiation codon. The data are consistent with a simple kinetic model in which a variety of rate constants contribute to the process of translation initiation.  相似文献   

15.
16.
This work assesses relationships for 30 complete prokaryotic genomes between the presence of the Shine-Dalgarno (SD) sequence and other gene features, including expression levels, type of start codon, and distance between successive genes. A significant positive correlation of the presence of an SD sequence and the predicted expression level of a gene based on codon usage biases was ascertained, such that predicted highly expressed genes are more likely to possess a strong SD sequence than average genes. Genes with AUG start codons are more likely than genes with other start codons, GUG or UUG, to possess an SD sequence. Genes in close proximity to upstream genes on the same coding strand in most genomes are significantly higher in SD presence. In light of these results, we discuss the role of the SD sequence in translation initiation and its relationship with predicted gene expression levels and with operon structure in both bacterial and archaeal genomes.  相似文献   

17.
The region controlling translation of the cat gene, which codes for chloramphenicol acetyltransferase, has been varied structurally in a series of plasmids that place the gene under control of the lac promoter. These plasmid constructs have enabled study of the structural features that affect the efficiency of mRNA translation. Altering the potential for secondary structure formation within the translation control region caused a tenfold variation in the synthesis of CAT enzyme, whereas varying the distance between the Shine-Dalgarno sequence (SD) and the translation start codon from 7 to 13 bases did not significantly affect the yield of CAT. If the SD was situated in a region of mRNA that is capable of base pairing, the efficiency of translation was decreased; however, the translation start codon, AUG, can initiate translation efficiently even when located in a segment capable of duplex formation. Overlapping of the cat translation control region by translation initiated upstream markedly affected initiation of translation within the cat gene: out-of-frame overlapping translation reduced CAT production by 90%; in-frame overlapping translation prevented detectable initiation of protein synthesis at the cat gene translation start codon, and yielded only fusion proteins. The enzymatic activity of such proteins was influenced by the length of the adventitious peptide segment added to the amino-terminus of the CAT polypeptide.  相似文献   

18.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

19.
AUG is the only initiation codon in eukaryotes   总被引:9,自引:0,他引:9  
An analysis of mutants of the yeast Saccharomyces cerevisiae indicates that AUG is the sole codon capable of initiating translation of iso-1-cytochrome c. This result with yeast and the sequence results of numerous eukaryotic genes indicate that AUG is the only initiation codon in eukaryotes; in contrast, results with Escherichia coli and bacteriophages indicate that both AUG and GUG are initiation codons in prokaryotes. The difference can be explained by the lack of the t6 A hypermodified nucleoside (N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]threonine) in prokaryotic initiator tRNA and its presence in eukaryotic initiator tRNA.  相似文献   

20.
R Boeck  D Kolakofsky 《The EMBO journal》1994,13(15):3608-3617
Only rarely do GUG (or CUG or ACG) codons which precede the 5'-proximal AUG function as initiators of protein synthesis, even when they are within a context that contains a purine at position -3 and a G at +4. For example, the upstream GUG of the human parainfluenza virus type 1 (hPIV1) P gene is initiated by ribosomes at high frequency, whereas a seemingly similar GUG codon in the hPIV3 P gene is not used at all. We have examined the reasons for this by expressing chimeric hPIV3/hPIV1 mRNAs, both in vivo and in vitro. A major determinant for efficient GUG utilization was located downstream of the GUG, but this did not appear to be involved in the formation of secondary structure. Rather, the sequence immediately downstream was found to be critical; this determinant was mapped to positions +5 and +6. GUG could be used efficiently for ribosomal initiation when the second codon was GAU but not when it was GUA. Similar results were found when other non-AUG start sites, the Sendai virus P gene ACG and the c-myc-1 CUG, were examined. These results suggest that positions +5 and +6 are important determinants for initiation at non-AUG start sites, and that they are recognized independently of the overall secondary structure of the mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号