首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elementary steps of the cross-bridge cycle in which troponin C (TnC) was partially extracted were investigated by sinusoidal analysis in rabbit psoas muscle fibers. The effects of MgATP and phosphate on the rate constants of exponential processes were studied at 200 mM ionic strength, pCa 4.20, pH 7.00, and at 20 degrees C. The results were analyzed with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, S is MgATP, D is MgADP, and P is phosphate (Pi). When TnC was extracted so that the average remaining tension was 11% (range 8-15%), K1 (MgATP association constant) increased to 7x, k2 (rate constant of cross-bridge detachment) increased to 1.55x, k-2 (reversal of detachment) decreased to 0.27x, and K2 (= k2/k-2: equilibrium constant of cross-bridge detachment) increased to 6.6x, k4 (rate constant of force generation) decreased to 0.4x, k-4 (reversal of force generation) increased to 2x, K4 (= k4/k-4) decreased to 0.17x, and K5 (Pi association constant) did not change. The activation factor alpha, which represents the fraction of cross-bridges participating in the cycling, decreased from 1 to 0.14 with TnC extraction. The fact that K1 increased with TnC extraction implies that the condition of the thin filament modifies the contour of the substrate binding site on the myosin head and is consistent with the Fenn effect. The fact that alpha decreased to 0.14 is consistent with the steric blocking mechanism (recruitment hypothesis) and indicates that some of the cross-bridges disappear from the active cycling pool. The fact that the equilibrium constants changed is consistent with the cooperative activation mechanism (graded activation hypothesis) among thin-filament regulatory units that consist of troponin (TnC, Tnl, TnT), tropomyosin, and seven actin molecules, and possibly include cross-bridges.  相似文献   

2.
Skinned frog fibers were reversibly activated in Ca-free solutions containing 0 mM KCl, 23 microM free Mg, and having an ionic strength of approximately 50 mM. Contractile force was nearly maximal at 22 degrees - 25 degrees C and decreased at lower temperatures. Maximal force in Ca-free solution at 50 mM ionic strength was close to twice the calcium-activated force with pCa 5 and 190 mM ionic strength. The force in Ca-free solution could be reduced to zero by raising the concentration of free Mg from 23 microM to 1.0 mM at the same ionic strength (50 mM). On stretching the fiber from 2.0 to 3.2 micron the force decreased; this effect was similar to that seen with Ca-activated fiber and the data support the idea that Ca-free tension is made at the cross-bridge level. Isotonic contraction during Ca-free activation showed a velocity transient as in Ca-activated fiber at 190 mM ionic strength, but the transient in the present case was very much prolonged. This finding suggests that contraction mechanisms for force generation and for shortening are essentially the same in the two conditions, but that certain rate constants of cross-bridge turnover are slower for the Ca-free contraction. Also, the results indicate that, in low ionic strength, Ca binding to thin filaments is not essential for unmasking the cross-bridge attachment sites, which suggests that the steric blocking mechanism is modified under these conditions.  相似文献   

3.
The regulatory complex of vertebrate skeletal muscle integrates information about cross-bridge binding, divalent cations and other intracellular ionic conditions to control activation of muscle contraction. Relatively little is known about the role of the troponin C (TnC) C-domain in the absence of Ca2+. Here, we use a standardized condition for measuring isometric tension in rabbit psoas skinned fibers to track TnC attachment and detachment in the absence of Ca2+ under different conditions of ionic strength, pH and MgATP. In the presence of MgATP and Mg2+, TnC detaches more readily and has a 1.5- to 2-fold lower affinity for the intact thin filament at pH 8 and 250 mM K+ than at pH 6 or in 30 mM K+; changes in affinity are fully reversible. The response to ionic strength is lost when Mg2+ and MgATP are absent, whereas the response to pH persists, suggesting that weaker electrostatic TnC-TnI-TnT interactions can be overridden by strongly bound cross-bridges. In solution, titration of a fluorescent C-domain mutant (F154W TnC) with Mg2+ reveals no significant changes in Mg2+ affinity with pH or ionic strength, suggesting that these parameters influence TnC binding by acting directly on electrostatic forces between TnC and TnI rather than by changing Mg2+ binding to C-domain sites III and IV.  相似文献   

4.
The role of the substrate (MgATP) and product (MgADP) molecules in cross-bridge kinetics is investigated by small amplitude length oscillations (peak to peak: 3 nm/cross-bridge) and by following amplitude change and phase shift in tension time courses. The range of discrete frequencies used for this investigation is 0.25-250 Hz, which corresponds to 0.6-600 ms in time domain. This report investigates the identity of the high frequency exponential advance (process C), which is equivalent to "phase 2" of step analysis. The experiments are performed in maximally activated (pCa 4.5-5.0) single fibers from chemically skinned rabbit psoas fibers at 20 degrees C and at the ionic strength 195 mM. The rate constant 2 pi c deduced from process (C) increases and saturates hyperbolically with an increase in MgATP concentration, whereas the same rate constant decreases monotonically with an increase in MgADP concentration. The effects of MgATP and MgADP are opposite in all respects we have studied. These observations are consistent with a cross-bridge scheme in which MgATP and MgADP are in rapid equilibria with rigorlike cross-bridges, and they compete for the substrate site on myosin heads. From our measurements, the association constants are found to be 1.4 mM-1 for MgATP and 2.8 mM-1 for MgADP. We further deduced that the composite second order rate constant of MgATP binding to cross-bridges and subsequent isomerization/dissociation reaction to be 0.57 x 10(6)M-1s-1.  相似文献   

5.
Thin filament regulation of contraction is thought to involve the binding of two activating ligands: Ca2+ and strongly bound cross-bridges. The specific cross-bridge states required to promote thin filament activation have not been identified. This study examines the relationship between cross-bridge cycling and thin filament activation by comparing the results of kinetic experiments using the Ca2+ sensitizers caffeine and bepridil. In single skinned rat soleus fibers, 30 mM caffeine produced a leftward shift in the tension-pCa relation from 6.03 +/- 0.03 to 6.51 +/- 0.03 pCa units and lowered the maximum tension to 0.60 +/- 0.01 of the control tension. In addition, the rate of tension redevelopment (ktr) was decreased from 3.51 +/- 0.12 s-1 to 2.70 +/- 0.19 s-1, and Vmax decreased from 1.24 +/- 0.07 to 0.64 +/- 0.02 M.L./s. Bepridil produced a similar shift in the tension-pCa curves but had no effect on the kinetics. Thus bepridil increases the Ca2+ sensitivity through direct effects on TnC, whereas caffeine has significant effects on the cross-bridge interaction. Interestingly, caffeine also produced a significant increase in stiffness under relaxing conditions (pCa 9.0), indicating that caffeine induces some strongly bound cross-bridges, even in the absence of Ca2+. The results are interpreted in terms of a model integrating cross-bridge cycling with a three-state thin-filament activation model. Significantly, strongly bound, non-tension-producing cross-bridges were essential to modeling of complete activation of the thin filament.  相似文献   

6.
The treatment of the bundles of rat myocardial fibers with ethyleneglycol-bis(beta-aminoethyl ether)-N,N-tetraacetate (EGTA) made the sarcolemma permeable for ions and small molecules. At the incubation medium pH 7.0 the EGTA-treated fibers developed a half-maximal tension at pCa 5.4, and the maximal tension at pCa 4.8. Inorganic phosphate (10 mM) reduced the maximal tension by 18 +/- 3% and decreased the calcium sensitivity of the myofibrils so that there was a shift of the pCa/tension curve by 0.3 unit to the right. Acidosis (pH 6.6) also decreased significantly the calcium sensitivity, while the presence of 10 mM phosphate produced additional depression of the calcium sensitivity. It is concluded that phosphate accumulation by the ischemic myocardium combined with acidosis may depress the contractility not only due to depletion of the free calcium concentration in the myoplasm but also as a result of the reduced calcium sensitivity of myofibrils.  相似文献   

7.
The kinetics of Ca(2+)-induced contractions of chemically skinned guinea pig trabeculae was studied using laser photolysis of NP-EGTA. The amount of free Ca(2+) released was altered by varying the output from a frequency-doubled ruby laser focused on the trabeculae, while maintaining constant total [NP-EGTA] and [Ca(2+)]. The time courses of the rise in stiffness and tension were biexponential at 23 degrees C, pH 7.1, and 200 mM ionic strength. At full activation (pCa < 5.0), the rates of the rapid phase of the stiffness and tension rise were 56 +/- 7 s(-1) (n = 7) and 48 +/- 6 s(-1) (n = 11) while the amplitudes were 21 +/- 2 and 23 +/- 3%, respectively. These rates had similar dependencies on final [Ca(2+)] achieved by photolysis: 43 and 50 s(-1) per pCa unit, respectively, over a range of [Ca(2+)] producing from 15% to 90% of maximal isometric tension. At all [Ca(2+)], the rise in stiffness initially was faster than that of tension. The maximal rates for the slower components of the rise in stiffness and tension were 4.1 +/- 0.8 and 6.2 +/- 1.0 s(-1). The rate of this slower phase exhibited significantly less Ca(2+) sensitivity, 1 and 4 s(-1) per pCa unit for stiffness and tension, respectively. These data, along with previous studies indicating that the force-generating step in the cross-bridge cycle of cardiac muscle is marginally sensitive to [Ca(2+)], suggest a mechanism of regulation in which Ca(2+) controls the attachment step in the cross-bridge cycle via a rapid equilibrium with the thin filament activation state. Myosin kinetics sets the time course for the rise in stiffness and force generation with the biexponential nature of the mechanical responses to steps in [Ca(2+)] arising from a shift to slower cross-bridge kinetics as the number of strongly bound cross-bridges increases.  相似文献   

8.
We examined the effect of troponin I (TnI) phosphorylation by cAMP-dependent protein kinase (PKA) on the length-dependent tension activation in skinned rat cardiac trabeculae. Increasing sarcomere length shifted the pCa (-log[Ca2+])-tension relation to the left. Treatment with PKA decreased the Ca2+ sensitivity of the myofilament and also decreased the length-dependent shift of the pCa-tension relation. Replacement of endogenous TnI with phosphorylated TnI directly demonstrated that TnI phosphorylation is responsible for the decreased length-dependence. When MgATP concentration was lowered in the absence of Ca2+, tension was elicited through rigorous cross-bridge-induced thin filament activation. Increasing sarcomere length shifted the pMgATP (-log[MgATP])-tension relation to the right, and either TnI phosphorylation or partial extraction of troponin C (TnC) abolished this length-dependent shift. We conclude that TnI phosphorylation by PKA attenuates the length-dependence of tension activation in cardiac muscle by decreasing the cross-bridge-dependent thin filament activation through a reduction of the interaction between TnI and TnC.  相似文献   

9.
When Ca2+ binds to troponin C (TnC), all 26 troponin-tropomyosin (Tn-Tm) complexes of a regulatory strand change in concert from the inactive to the active configuration. To see if the complexes respond similarly when they are activated by rigor crossbridges in the absence of Ca2+, we determined the slope (ns) of the bell-shaped pS/tension (pS = -log [MgATP], where S = MgATP2-) relationship between pS 5, where the tension is maximal, and pS 2.3, where fibers are fully relaxed. In control skinned rabbit psoas fibers the ns value is greater than 4; it progressively decreases with TnC extraction. This decrease in ns with TnC extraction is analogous to the decrease in the slope (Hill coefficient) of the pCa/tension (pCa = -log [Ca2+]) relationship with extraction. Complete TnC extraction reduces the maximum substrate-induced tension by only 25%; in contrast, it reduces the maximum Ca2+ induced tension to zero. The effects of TnC extraction on the slope of the pS/tension curve are explained by the assumptions that (1) extracted Tn-Tm complexes no longer change in concert with their neighbors but change independently of them, and (2) co-operative signals cannot cross extracted Tn-Tm complexes. The ns value, therefore, like the nH, is a direct function of the number of contiguous, intact, Tn-Tm complexes in a stretch of a regulatory strand. To describe qualitatively the bi-phasic pS/tension relationship, the mono-phasic pCa/tension relationship, and the effects of TnC extraction on them, we introduce a version of the concerted-transition formalism which includes two activating ligands, Ca2+ and rigor crossbridges.  相似文献   

10.
The elementary steps of contraction in rabbit fast twitch muscle fibers were investigated with particular emphasis on the mechanism of phosphate (Pi) binding/release, the mechanism of force generation, and the relation between them. We monitor the rate constant 2 pi b of a macroscopic exponential process (B) by imposing sinusoidal length oscillations. We find that the plot of 2 pi b vs. Pi concentration is curved. From this observation we infer that Pi released is a two step phenomenon: an isomerization followed by the actual Pi release. Our results fit well to the kinetic scheme: [formula: see text] where A = actin, M = myosin, S = MgATP (substrate), D = MgADP, P = phosphate, and Det is a composite of all the detached and weakly attached states. For our data to be consistent with this scheme, it is also necessary that step 4 (isomerization) is observed in process (B). By fitting this scheme to our data, we obtained the following kinetic constants: k4 = 56 s-1, k-4 = 129 s-1, and K5 = 0.069 mM-1, assuming that K2 = 4.9. Experiments were performed at pCa 4.82, pH 7.00, MgATP 5 mM, free ATP 5 mM, ionic strength 200 mM in K propionate medium, and at 20 degrees C. Based on these kinetic constants, we calculated the probability of each cross-bridge state as a function of Pi, and correlated this with the isometric tension. Our results indicate that all attached cross-bridges support equal amount of tension. From this, we infer that the force is generated at step 4. Detailed balance indicates that 50-65% of the free energy available from ATP hydrolysis is transformed to work at this step. For our data to be consistent with the above scheme, step 6 must be the slowest step of the cross-bridge cycle (the rate limiting step). Further, AM*D is a distinctly different state from the AMD state that is formed by adding D to the bathing solution. From our earlier ATP hydrolysis data, we estimated k6 to be 9 s-1.  相似文献   

11.
Intrinsic troponin C (TnC) was extracted from small bundles of rabbit psoas fibers and replaced with TnC labeled with dansylaziridine (5-dimethylaminonaphthalene-1-sulfonyl). The flourescence of incorporated dansylaziridine-labeled TnC was enhanced by the binding of Ca2+ to the Ca2+-specific (regulatory) sites of TnC and was measured simultaneously with force (Zot, H.G., Güth, K., and Potter, J.D. (1986) J. Biol. Chem. 261, 15883-15890). Various myosin cross-bridge states also altered the fluorescence of dansylaziridine-labeled TnC in the filament, with cycling cross-bridges having a greater effect than rigor cross-bridges; and in both cases, there was an additional effect of Ca2+. The paired fluorescence and tension data were used to calculate the apparent Ca2+ affinity of the regulatory sites in the thin filament and were shown to increase at least 10-fold during muscle activation presumably due to the interaction of cycling cross-bridges with the thin filament. The cross-bridge state responsible for this enhanced Ca2+ affinity was shown to be the myosin-ADP state present only when cross-bridges are cycling. The steepness of the pCa force curves (where pCa represents the -log of the free Ca2+ concentration) obtained in the presence of ATP at short and long sarcomere lengths was the same, suggesting that cooperative interactions between adjacent troponin-tropomyosin units may spread along much of the actin filament when cross-bridges are attached to it. In contrast to the cycling cross-bridges, rigor bridges only increased the Ca2+ affinity of the regulatory sites 2-fold. Taken together, the results presented here indicate a strong coupling between the Ca2+ regulatory sites and cross-bridge interactions with the thin filament.  相似文献   

12.
J E Van Eyk  C M Kay  R S Hodges 《Biochemistry》1991,30(41):9974-9981
The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Direct action of the cardiotonic bipyridine milrinone on thecross bridges of single fibers of skinned rabbit skeletal muscle wasinvestigated. At 10°C and pH 7.0, milrinone reduced isometric tension in a logarithmically concentration-dependent manner, with a55% reduction in force at 0.6 mM. Milrinone also reducedCa2+ sensitivity of skinned fibersin terms of force production; the shift in the force-pCa curveindicated a change in the pCa value at 50% maximal force from 6.10 to5.94. The unloaded velocity of shortening was reduced by 18% in thepresence of 0.6 mM milrinone. Parts of the transient tension responseto step change in length were altered by milrinone, so that the testand control transients could not be superimposed. The results indicatethat milrinone interferes with the cross-bridge cycle and possiblydetains cross bridges in low-force states. The results also suggestthat the positive inotropic effect of milrinone on cardiac muscle isprobably not due to the drug's direct action on the muscle crossbridges. The specific and reversible action of the bipyridine on muscle cross bridges makes it a potentially useful tool for probing the chemomechanical cross-bridge cycle.

  相似文献   

14.
Extraction of troponin C (TnC) from skinned muscle fibers reduces maximum Ca2+ and rigor cross-bridge (RXB)-activated tensions and reduces cooperativity between neighboring regulatory units (one troponin-tropomyosin complex and the seven associated actins) of thin filaments. This suggests that TnC has a determining role in RXB, as well as in Ca(2+)-dependent activation processes. To investigate this possibility further, we replaced fast TnC (fTnC) of rabbit psoas fibers with either CaM[3,4TnC] or cardiac TnC (cTnC) and compared the effects of these substitutions on Ca2+ and RXB activation of tension. CaM[3,4TnC] substitution has the same effect on Ca(2+)- and RXB-activated tensions; they are reduced 50%, and cooperativity between regulatory units is reduced 40%. cTnC substitution also reduces the maximum Ca(2+)-activated tension and cooperativity. But with RXB activation the effects on tension and cooperativity are opposite; cTnC substitution potentiates tension but reduces cooperativity. We considered whether tension potentiation could be explained by increased activation by cycling cross-bridges (CXBs), but the concerted transition formalism predicts fibers will fail to relax in high substrate and high pCa when CXBs are activator ligands. It predicts resting tension, which is not observed in either control or cTnC-substituted fibers. Rather, it appears that cTnC facilitates RXB activation of fast fibers more effectively than fTnC. The order of RXB-activated tension facilitation is cTnC > fTnC > CaM[3,4TnC] > empty TnC-binding sites. Comparison of the structures of fTnC, CaM[3,4TnC], and cTnC indicates that the critical region for this property lies in the central helix or N-terminal domain, including EF hand motifs 1 and 2.  相似文献   

15.
Activation of striated muscle contraction is a highly cooperative signal transduction process converting calcium binding by troponin C (TnC) into interactions between thin and thick filaments. Once calcium is bound, transduction involves changes in protein interactions along the thin filament. The process is thought to involve three different states of actin-tropomyosin (Tm) resulting from changes in troponin's (Tn) interaction with actin-Tm: a blocked (B) state preventing myosin interaction, a closed (C) state allowing weak myosin interactions and favored by calcium binding to Tn, and an open or M state allowing strong myosin interactions. This was tested by measuring the apparent rate of Tn dissociation from rigor skeletal myofibrils using labeled Tn exchange. The location and rate of exchange of Tn or its subunits were measured by high-resolution fluorescence microscopy and image analysis. Three different rates of Tn exchange were observed that were dependent on calcium concentration and strong cross-bridge binding that strongly support the three-state model. The rate of Tn dissociation in the non-overlap region was 200-fold faster at pCa 4 (C-state region) than at pCa 9 (B-state region). When Tn contained engineered TnC mutants with weakened regulatory TnI interactions, the apparent exchange rate at pCa 4 in the non-overlap region increased proportionately with TnI-TnC regulatory affinity. This suggests that the mechanism of calcium enhancement of the rate of Tn dissociation is by favoring a TnI-TnC interaction over a TnI-actin-Tm interaction. At pCa 9, the rate of Tn dissociation in the overlap region (M-state region) was 100-fold faster than the non-overlap region (B-state region) suggesting that strong cross-bridges increase the rate of Tn dissociation. At pCa 4, the rate of Tn dissociation was twofold faster in the non-overlap region (C-state region) than the overlap region (M-state region) that likely involved a strong cross-bridge influence on TnT's interaction with actin-Tm. At sub-maximal calcium (pCa 6.2-5.8), there was a long-range influence of the strong cross-bridge on Tn to enhance its dissociation rate, tens of nanometers from the strong cross-bridge. These observations suggest that the three different states of actin-Tm are associated with three different states of Tn. They also support a model in which strong cross-bridges shift the regulatory equilibrium from a TnI-actin-Tm interaction to a TnC-TnI interaction that likely enhances calcium binding by TnC.  相似文献   

16.
The force-generation and phosphate-release steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibers (STF) were investigated using sinusoidal analysis, and the results were compared with those of rabbit psoas fast-twitch fibers (FTF). Single fiber preparations were activated at pCa 4.40 and ionic strength 180 mM at 20 degrees C. The effects of inorganic phosphate (Pi) concentrations on three exponential processes, B, C, and D, were studied. Results are consistent with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, D is MgADP, and P is inorganic phosphate. The values determined are k4 = 5.7 +/- 0.5 s-1 (rate constant of isomerization step, N = 9, mean +/- SE), k-4 = 4.5 +/- 0.5 s-1 (rate constant of reverse isomerization), K4 = 1.37 +/- 0.13 (equilibrium constant of the isomerization), and K5 = 0.18 +/- 0.01 mM-1 (Pi association constant). The isomerization step (k4) in soleus STF is 20 times slower, and its reversal (k-4) is 20 times slower than psoas fibers. Consequently, the equilibrium constant of the isomerization step (K4) is the same in these two types of fibers. The Pi association constant (K5) is slightly higher in STF than in FTF, indicating that Pi binds to cross-bridges slightly more tightly in STF than FTF. By correlating the cross-bridge distribution with isometric tension, it was confirmed that force is generated during the isomerization (step 4) of the AMDP state and before Pi release in soleus STF.  相似文献   

17.
Linear dichroism of 5' tetramethyl-rhodamine (5'ATR) was measured to monitor the effect of sarcomere length (SL) on troponin C (TnC) structure during Ca2+ activation in single glycerinated rabbit psoas fibers and skinned right ventricular trabeculae from rats. Endogenous TnC was extracted, and the preparations were reconstituted with TnC fluorescently labeled with 5'ATR. In skinned psoas fibers reconstituted with sTnC labeled at Cys 98 with 5'ATR, dichroism was maximal during relaxation (pCa 9.2) and was minimal at pCa 4.0. In skinned cardiac trabeculae reconstituted with a mono-cysteine mutant cTnC (cTnC(C84)), dichroism of the 5'ATR probe attached to Cys 84 increased during Ca2+ activation of force. Force and dichroism-[Ca2+] relations were fit with the Hill equation to determine the pCa50 and slope (n). Increasing SL increased the Ca2+ sensitivity of force in both skinned psoas fibers and trabeculae. However, in skinned psoas fibers, neither SL changes or force inhibition had an effect on the Ca2+ sensitivity of dichroism. In contrast, increasing SL increased the Ca2+ sensitivity of both force and dichroism in skinned trabeculae. Furthermore, inhibition of force caused decreased Ca2+ sensitivity of dichroism, decreased dichroism at saturating [Ca2+], and loss of the influence of SL in cardiac muscle. The data indicate that in skeletal fibers SL-dependent shifts in the Ca2+ sensitivity of force are not caused by corresponding changes in Ca2+ binding to TnC and that strong cross-bridge binding has little effect on TnC structure at any SL or level of activation. On the other hand, in cardiac muscle, both force and activation-dependent changes in cTnC structure were influenced by SL. Additionally, the effect of SL on cardiac muscle activation was itself dependent on active, cycling cross-bridges.  相似文献   

18.
The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins.  相似文献   

19.
To evaluate the accuracy of pH determination by 31P-NMR, factors which influence the pK value of phosphate were appraised on the basis of the titration of 1 mM phosphate buffer solution. When the method is used for the determination of cytoplasmic pH, ionic strength is the major factor causing shifts of apparent pK (pK') value, and the magnitude of the shift can be predicted from the ionic strength calculated by means of the Debye-Hückel equation. Ions (Na+, K+, Mg2+, and Ca2+) and salivary protein affected the pK' value by 0.1 to 0.3 units in solution with a given ionic strength depending on the species of ion. The form of the titration curve varied with temperature. Based on these results, the value of 6.75 was obtained with the uncertainty of 0.12 for the intracellular pK' of frog muscle at 24 degrees C.  相似文献   

20.
We investigated whether changing thin filament Ca(2+) sensitivity alters the rate of contraction, either during normal cross-bridge cycling or when cross-bridge cycling is increased by inorganic phosphate (P(i)). We increased or decreased Ca(2+) sensitivity of force production by incorporating into rat skinned cardiac trabeculae the troponin C (TnC) mutants V44QTnC(F27W) and F20QTnC(F27W). The rate of isometric contraction was assessed as the rate of force redevelopment (k(tr)) after a rapid release and restretch to the original length of the muscle. Both in the absence of added P(i) and in the presence of 2.5 mM added P(i) 1) Ca(2+) sensitivity of k(tr) was increased by V44QTnC(F27W) and decreased by F20QTnC(F27W) compared with control TnC(F27W); 2) k(tr) at submaximal Ca(2+) activation was significantly faster for V44QTnC(F27W) and slower for F20QTnC(F27W) compared with control TnC(F27W); 3) at maximum Ca(2+) activation, k(tr) values were similar for control TnC(F27W), V44QTnC(F27W), and F20QTnC(F27W); and 4) k(tr) exhibited a linear dependence on force that was indistinguishable for all TnCs. In the presence of 2.5 mM P(i), k(tr) was faster at all pCa values compared with the values for no added P(i) for TnC(F27W), V44QTnC(F27W), and F20QTnC(F27W). This study suggests that TnC Ca(2+) binding properties modulate the rate of cardiac muscle contraction at submaximal levels of Ca(2+) activation. This result has physiological relevance considering that, on a beat-to-beat basis, the heart contracts at submaximal Ca(2+) activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号