首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The classical type of transient receptor potential (TRPC) channel is a molecular candidate for Ca2+-permeable cation channels in mammalian cells. Because TRPC4 and TRPC5 belong to the same subfamily of TRPC, they have been assumed to have the same physiological properties. However, we found that TRPC4 had its own functional characteristics different from those of TRPC5. TRPC4 channels had no constitutive activity and were activated by muscarinic stimulation only when a muscarinic receptor was co-expressed with TRPC4 in human embryonic kidney (HEK) cells. Endogenous muscarinic receptor appeared not to interact with TRPC4. TPRC4 activation by GTPγS was not desensitized. TPRC4 activation by GTPγS was not inhibited by either Rho kinase inhibitor or MLCK inhibitor. TRPC4 was sensitive to external pH with pK a of 7.3. Finally, TPRC4 activation by GTPγS was inhibited by the calmodulin inhibitor W-7. We conclude that TRPC4 and TRPC5 have different properties and their own physiological roles. These authors contributed equally to this work.  相似文献   

2.
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP3) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4−/− mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

3.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca2+-permeable channels. TRPC channels are activated by stimulation of Gαq-PLC-coupled receptors. Here, we report that TRPC4/TRPC5 can be activated by Gαi. We studied the essential role of Gαi subunits in TRPC4 activation and investigated changes in ion selectivity and pore dilation of the TRPC4 channel elicited by the Gαi2 subunit. Activation of TRPC4 by Gαi2 increased Ca2+ permeability and Ca2+ influx through TRPC4 channels. Co-expression of the muscarinic receptor (M2) and TRPC4 in HEK293 cells induced TRPC4-mediated Ca2+ influx. Moreover, both TRPC4β and the TRPC4β-Gαi2 signaling complex induced inhibition of neurite growth and arborization in cultured hippocampal neurons. Cells treated with KN-93, a CaMKII inhibitor, prevented TRPC4- and TRPC4-Gαi2Q205L-mediated inhibition of neurite branching and growth. These findings indicate an essential role of Gαi proteins in TRPC4 activation and extend our knowledge of the functional role of TRPC4 in hippocampal neurons.  相似文献   

4.
Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that are widely expressed in numerous cell types. Here, we demonstrate a new mechanism of TPRC isofom 5 (TRPC5) regulation, via cAMP signaling via Gα(s). Monovalent cation currents in human embryonic kidney-293 cells transfected with TRPC5 were induced by G protein activation with intracellular perfusion of GTPγS or by muscarinic stimulation. This current could be inhibited by a membrane-permeable analog of cAMP, 8-bromo-cAMP, by isoproterenol, by a constitutively active form of Gα(s) [Gα(s) (Q227L)], and by forskolin. These inhibitory effects were blocked by the protein kinase A (PKA) inhibitors, KT-5720 and H-89, as well as by two point mutations at consensus PKA phosphorylation sites on TRPC5 (S794A and S796A). Surface expression of several mutated versions of TRPC5, quantified using surface biotinylation, were not affected by Gα(s) (Q227L), suggesting that trafficking of this channel does not underlie the regulation we report. This mechanism of inhibition was also found to be important for the closely related channel, TRPC4, in particular for TRPC4α, although TRPC4β was also affected. However, this form of regulation was not found to be involved in TRPC6 and transient receptor potential vanilloid 6 function. In murine intestinal smooth muscle cells, muscarinic stimulation-induced cation currents were mediated by TRPC4 (>80%) and TRPC6. In murine intestinal smooth muscle cells, 8-bromo-cAMP, adrenaline, and isoproterenol decreased nonselective cation currents activated by muscarinic stimulation or GTPγS. Together, these results suggest that TRPC5 is directly phosphorylated by G(s)/cAMP/PKA at positions S794 and S796. This mechanism may be physiologically important in visceral tissues, where muscarinic receptor and β(2)-adrenergic receptor are involved in the relaxation and contraction of smooth muscles.  相似文献   

5.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca(2+)-permeable channels and mediate numerous cellular functions. It is commonly assumed that TRPC channels are activated by stimulation of Gα(q)-PLC-coupled receptors. However, whether the Gα(q)-PLC pathway is the main regulator of TRPC4/5 channels and how other Gα proteins may regulate these channels are poorly understood. We previously reported that TRPC4/TRPC5 can be activated by Gα(i). In the current work, we found that Gα(i) subunits, rather than Gα(q), are the primary and direct activators of TRPC4 and TRPC5. We report a novel molecular mechanism in which TRPC4 is activated by several Gα(i) subunits, most prominently by Gα(i2), and TRPC5 is activated primarily by Gα(i3). Activation of Gα(i) by the muscarinic M2 receptors or expression of the constitutively active Gα(i) mutants equally and fully activates the channels. Moreover, both TRPC4 and TRPC5 are activated by direct interaction of their conserved C-terminal SESTD (SEC14-like and spectrin-type domains) with the Gα(i) subunits. Two amino acids (lysine 715 and arginine 716) of the TRPC4 C terminus were identified by structural modeling as mediating the interaction with Gα(i2). These findings indicate an essential role of Gα(i) proteins as novel activators for TRPC4/5 and reveal the molecular mechanism by which G-proteins activate the channels.  相似文献   

6.
TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca2+-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4–S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca2+ of the culture medium. Current-voltage relationships of the TRPC4G503S and TRPC5G504S mutant ion channels resemble that of fully activated TRPC4 and TRPC5 wild-type channels, respectively. Modeling the structure of the transmembrane domains and the pore region (S4-S6) of TRPC4 predicts a conserved serine residue within the C-terminal sequence of the predicted S6 helix as a potential interaction site. Introduction of a second mutation (S623A) into TRPC4G503S suppressed the constitutive activation and partially rescued its function. These results indicate that the S4–S5 linker is a critical constituent of TRPC4/C5 channel gating and that disturbance of its sequence allows channel opening independent of any sensor domain.  相似文献   

7.
Ca2+-permeable store-operated channels (SOCs) mediate Ca2+ entry pathways which are involved in many cellular functions such as contraction, growth, and proliferation. Prototypical SOCs are formed of Orai1 proteins and are activated by the endo/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1). There is considerable debate about whether canonical transient receptor potential 1 (TRPC1) proteins also form store-operated channels (SOCs), and if they do, is Orai1 involved. We recently showed that stimulation of TRPC1-based SOCs involves store depletion inducing STIM1-evoked Gαq/PLCβ1 activity in contractile vascular smooth muscle cells (VSMCs). Therefore the present work investigates the role of Orai1 in activation of TRPC1-based SOCs in freshly isolated mesenteric artery VSMCs from wild-type (WT) and Orai1?/? mice. Store-operated whole-cell and single channel currents recorded from WT and Orai1?/? VSMCs had similar properties, with relatively linear current-voltage relationships, reversal potentials of about +20mV, unitary conductances of about 2pS, and inhibition by anti-TRPC1 and anti-STIM1 antibodies. In Orai1?/? VSMCs, store depletion induced PLCβ1 activity measured with the fluorescent phosphatidylinositol 4,5-bisphosphate/inositol 1,4,5-trisphosphate biosensor GFP-PLCδ1-PH, which was prevented by knockdown of STIM1. In addition, in Orai1?/? VSMCs, store depletion induced translocation of STIM1 from within the cell to the plasma membrane where it formed STIM1-TRPC1 interactions at discrete puncta-like sites. These findings indicate that activation of TRPC1-based SOCs through a STIM1-activated PLCβ1 pathway are likely to occur independently of Orai1 proteins, providing evidence that TRPC1 channels form genuine SOCs in VSMCs with a contractile phenotype.  相似文献   

8.
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.  相似文献   

9.
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.  相似文献   

10.
Transient receptor potential (TRP) proteins have been identified as cation channels that are activated by agonist–receptor coupling and mediate various cellular functions. TRPC7, a homologue of TRP channels, has been shown to act as a Ca2+ channel activated by G protein-coupled stimulation and to be abundantly expressed in the heart with an as-yet-unknown function. We studied the role of TRPC7 in G protein-activated signaling in HEK293 cells and cultured cardiomyocytes in vitro transfected with FLAG-tagged TRPC7 cDNA and in Dahl salt-sensitive rats with heart failure in vivo. TRPC7-transfected HEK293 cells showed an augmentation of carbachol-induced intracellular Ca2+ transient, which was attenuated under a Ca2+-free condition or in the presence of SK&F96365 (a Ca2+-permeable channel blocker). Upon stimulation with angiotensin II (Ang II), cultured neonatal rat cardiomyocytes transfected with TRPC7 exhibited a significant increase in apoptosis detected by TUNEL staining, accompanied with a decrease in the expression of atrial natriuretic factor and destruction of actin fibers, as compared with non-transfected cardiomyocytes. Ang II-induced apoptosis was inhibited by CV-11974 (Candesartan; Ang II type 1 [AT1] receptor blocker), SK&F96365, and FK506 (calcineurin inhibitor). In Dahl salt-sensitive rats, apoptosis and TRPC7 expression were increased in the failing myocardium, and a long-term treatment with temocapril, an angiotensin-converting enzyme inhibitor, suppressed both. Our findings suggest that TRPC7 could act as a Ca2+ channel activated by AT1 receptors, leading to myocardial apoptosis possibly via a calcineurin-dependent pathway. TRPC7 might be a key initiator linking AT1-activation to myocardial apoptosis, and thereby contributing to the process of heart failure.  相似文献   

11.
Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca2+ signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca2+-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb2+). Intracellular Ca2+ and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb2+ stimulated TRPC5 at concentrations greater than 1 μM. Control cells without TRPC5 showed little or no response to Pb2+ and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 μM Pb2+. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb2+ but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb2+ is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.  相似文献   

12.
Lee KP  Jun JY  Chang IY  Suh SH  So I  Kim KW 《Molecules and cells》2005,20(3):435-441
Classical transient receptor potential channels (TRPCs) are thought to be candidates for the nonselective cation channels (NSCCs) involved in pacemaker activity and its neuromodulation in murine stomach smooth muscle. We aimed to determine the role of TRPC4 in the formation of NSCCs and in the generation of slow waves. At a holding potential of -60 mV, 50 mM carbachol (CCh) induced INSCC of amplitude [500.8+/-161.8 pA (n=8)] at -60 mV in mouse gastric smooth muscle cells. We investigated the effects of commercially available antibodies to TRPC4 on recombinant TRPC4 expressed in HEK cells and CCh-induced NSCCs in gastric smooth muscle cells. TRPC4 currents in HEK cells were reduced from 1525.6+/-414.4 pA (n=8) to 146.4+/-83.3 pA (n=10) by anti-TRPC4 antibody and INSCC amplitudes were reduced from 230.9+/-36.3 pA (n=15) to 49.8+/-11.8 pA (n=9). Furthermore, INSCC in the gastric smooth muscle cells of TRPC4 knockout mice was only 34.4+/-10.4 pA (n=8) at -60 mV. However, slow waves were still present in the knockout mice. Our data suggest that TRPC4 is an essential component of the NSCC activated by muscarinic stimulation in the murine stomach.  相似文献   

13.
胡玲芹  潘玉君 《生物磁学》2014,(8):1583-1586
TRPC6(Thetransientreceptorpotentialcanonical6)为瞬时受体电位(TRP)超家族的成员之一,编码钙可通透的非选择性阳离子通道。其具有六次跨膜结构。TRPC6同型或异型四聚体通道由TRPC6蛋白相互结合形成或与同在一个亚家族的TRPC3,TRPC7形成。TRPC6通道可被G蛋白耦联受体(GPCR)和受体酪氨酸激酶(receptortyrosinekinasesRTK)通过激活磷脂酶C(PLC)激活。其还可直接被第二信使DAG(diacylglycer01)激活。已有研究证实该通道通过激活上述信号传导通路参与了多种生理过程。TRPC6基因编码的蛋白在人体多个部位均有表达。TRPC6在中枢神经系统广泛表达。其在不同部位的表达量不同,并与TRPC家族的其他成员一起参与了多种生理过程。TRPC6引起的细胞阳离子浓度的变化可能参与了多种神经系统疾病的发生发展过程。因此。研究TRPC6在中枢神经系统中的作用对疾病发病机制的了解及治疗变得更有意义。本文就TRPC6在中枢神经系统中的作用进行综述,并主要介绍其在树突发育,神经元保护及细胞生长方面的作用。  相似文献   

14.
Stimulation of receptor-operated (ROCs) and store-operated (SOCs) Ca2+-permeable cation channels by vasoconstrictors has many important physiological functions in vascular smooth muscle. The present review indicates that ROCs and SOCs with diverse properties in different blood vessels are likely to be explained by composition of different subunits from the canonical transient receptor potential (TRPC) family of cation channel proteins. In addition we illustrate that activation of native TRPC ROCs and SOCs involves different phospholipase-mediated transduction pathways linked to generation of diacylglycerol (DAG). Moreover we describe recent novel data showing that the endogenous phospholipid phosphoinositol 4,5-bisphosphate (PIP2) has profound and contrasting actions on TRPC ROCs and SOCs. Optimal activation of a native TRPC6 ROC by angiotensin II (Ang II) requires both depletion of PIP2 and generation of DAG which leads to stimulation of TRPC6 via a PKC-independent mechanism. The data also indicate that PIP2 has a marked constitutive inhibitory action of TRPC6 and DAG and PIP2 are physiological antagonists on TRPC6 ROCs. In contrast PIP2 stimulates TRPC1 SOCs and has an obligatory role in activation of these channels by store-depletion which requires PKC-dependent phosphorylation of TRPC1 proteins. Finally, we conclude that interactions between PIP2 bound to TRPC proteins at rest, generation of DAG and PKC-dependent phosphorylation of TRPC proteins have a fundamental role in activation mechanisms of ROCs and SOCs in vascular smooth muscle.  相似文献   

15.
TRPC channels are Ca2+-permeable cation channels which are regulated downstream from receptor-coupled PIP2 hydrolysis. These channels contribute to a wide variety of cellular functions. Loss or gain of channel function has been associated with dysfunction and aberrant physiology. TRPC channel functions are influenced by their physical and functional interactions with numerous proteins that determine their regulation, scaffolding, trafficking, as well as their effects on the downstream cellular processes. Such interactions also compartmentalize the Ca2+ signals arising from TRPC channels. A large number of studies demonstrate that trafficking is a critical mode by which plasma membrane localization and surface expression of TRPC channels are regulated. This review will provide an overview of intracellular trafficking pathways as well as discuss the current state of knowledge regarding the mechanisms and components involved in trafficking of the seven members of the TRPC family (TRPC1–TRPC7).  相似文献   

16.
Transient receptor potential (TRP) channels play important functional roles in the signal transduction machinery of hormone-secreting cells and have recently been implicated in reproductive physiology. While expression studies have demonstrated TRP channel expression at all levels of the hypothalamic–pituitary–gonadal (hpg) axis, functional details about TRP channel action at the level of the individual cells controlling reproduction are just beginning to emerge. Canonical TRP (TRPC) channels are prominently expressed in the reproductive center of the neuroendocrine brain, i.e. in kisspeptin and gonadotropin-releasing hormone (GnRH) neurons. Kisspeptin neurons are depolarized by leptin via activation of TRPC channels and kisspeptin depolarizes GnRH neurons through TRPC4 activation. Recent studies have functionally identified TRPC channels also in gonadotrope cells in the anterior pituitary gland, which secrete gonadotropins in response to GnRH and thus regulate gonadal function. TRP channel expression in these cells exhibits remarkable plasticity and depends on the hormonal status of the animal. Subsequent functional analyses have demonstrated that TRPC5 in gonadotropes contributes to depolarization of the plasma membrane upon GnRH stimulation and increases the intracellular Ca2+ concentration via its own Ca2+ permeability and via the activation of voltage-gated Ca2+ channels. However, conditional gene targeting experiments will be needed to unambiguously dissect the physiological role of TRPC channels in the different cell types of the reproductive axis in vivo.  相似文献   

17.
Canonical transient receptor potential (TRPC) channels are Ca2+-permeable nonselective cation channels that are activated by a wide variety of stimuli, including G protein-coupled receptors (GPCRs). The TRPC4 channel is expressed in a punctate distribution in the membrane. To identify the regulating region of the channel trafficking to the membrane, we generated deletion mutants of the TRPC4 channel. We determined that when either region that was downstream of the 20 amino acids of the N terminus or the 700–730 amino acids was deleted, the mutants were retained in the endoplasmic reticulum. By coexpression of the wild-type TRPC4 with deletion mutants, we found that the 23–29 amino acids of the N terminus regulate a membrane trafficking. Additionally, by the fluorescence resonance energy transfer (FRET) method, we found that the regions downstream of the 99 amino acid region of the N terminus and upstream of the 730 amino acid region in the C terminus produce assembly of the TRPC4 tetramers. We inferred the candidate proteins that regulate or interact with the 23–29 domain of TRPC4.  相似文献   

18.
The classic type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channels in mammalian cells. Because TRPC channels have calmodulin (CaM) binding sites at their COOH termini, we investigated the effect of CaM on mTRPC5. TRPC5 was initially activated by muscarinic stimulation with 50 microM carbachol and then decayed rapidly even in the presence of carbachol. Intracellular CaM (150 microg/ml) increased the amplitude of mTRPC5 current activated by muscarinic stimulation. CaM antagonists (W-7 and calmidazolium) inhibited mTRPC5 currents when they were applied during the activation of mTRPC5. Pretreatment of W-7 and calmidazolium also inhibited the activation of mTRPC5 current. Inhibitors of myosin light chain kinase (MLCK) inhibited the activation of mTRPC5 currents, whereas inhibitors of CaM-dependent protein kinase II did not. Small interfering RNA against cardiac type MLCK also inhibited the activation of mTRPC5 currents. However, inhibitors of CaM or MLCK did not show any effect on GTPgammaS-induced currents. Application of both Rho kinase inhibitor and MLCK inhibitor inhibited GTPgammaS-induced currents. We conclude that CaM and MLCK modulates the activation process of mTRPC5.  相似文献   

19.
The classic type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channel in mammalian cells. TRPC5 is desensitized rapidly after activation by G protein-coupled receptor. Herein we report our investigation into the desensitization of mTRPC5 and localization of the molecular determinants of this desensitization using mutagenesis. TRPC5 was initially activated by muscarinic stimulation using 100 microM carbachol (CCh) and then decayed rapidly even in the presence of CCh (desensitization). Increased EGTA or omission of MgATP in the pipette solution slowed the rate of this desensitization. The protein kinase C (PKC) inhibitors, 1 microM chelerythrine, 100 nM GF109203X, or PKC peptide inhibitor (19-36), inhibited this desensitization of TRPC5 activated by 100 microM CCh. When TRPC5 current was activated by intracellular GTPgammaS, PKC inhibitors prevented TRPC5 desensitization and the mutation of TRPC5 T972 to alanine slowed the desensitization process dramatically. We conclude that the desensitization of TRPC5 occurs via PKC phosphorylation and suggest that threonine at residue 972 of mouse TRPC5 might be required for its phosphorylation by PKC.  相似文献   

20.
To investigate thepossible role of members of the mammalian transient receptor potential(TRP) channel family (TRPC1-7) in vasoconstrictor-inducedCa2+ entry in vascular smooth muscle cells, we studied[Arg8]-vasopressin (AVP)-activated channels in A7r5aortic smooth muscle cells. AVP induced an increase in free cytosolicCa2+ concentration ([Ca2+]i)consisting of Ca2+ release and Ca2+ influx.Whole cell recordings revealed the activation of a nonselective cationcurrent with a doubly rectifying current-voltage relation strikinglysimilar to those described for some heterologously expressed TRPCisoforms. The current was also stimulated by direct activation of Gproteins as well as by activation of the phospholipase C-coupledplatelet-derived growth factor receptor. Currents were not activated bystore depletion or increased [Ca2+]i.Application of 1-oleoyl-2-acetyl-sn-glycerol stimulated the current independently of protein kinase C, a characteristic property ofthe TRPC3/6/7 subfamily. Like TRPC6-mediated currents, cation currentsin A7r5 cells were increased by flufenamate. Northern hybridizationrevealed mRNA coding for TRPC1 and TRPC6. We therefore suggest thatTRPC6 is a molecular component of receptor-stimulated Ca2+-permeable cation channels in A7r5 smooth muscle cells.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号