首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coligenoid, composed of the B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli, was separated into monomers in the presence of 2% propionic acid containing 6 M urea (pH 3.8). Monomers equilibrated against 0.75% or 0.5% propionic acid containing 3 M urea (pH 3.8) did not reassemble into coligenoid. Complexes of GM1 ganglioside and coligenoid in these buffers were detected by SDS-polyacrylamide gel electrophoresis, but those of the GM1 ganglioside and monomers were not. The binding ability of monomer to GM1 ganglioside in these buffers was about 1% of that of normal coligenoid by GM1-enzyme-linked immunosorbent assay. Moreover, monomers in these buffers reassembled into coligenoid by buffering against original TEAN buffer, and the binding ability of the resulting coligenoid to GM1 ganglioside was identical to that of native coligenoid. These data suggest that although coligenoid formation is important for the receptor binding of the B subunit, little binding ability to GM1 ganglioside remains in monomer of the B subunit.  相似文献   

2.
Ganglioside GM1 beta-galactosidase: studies in human liver and brain   总被引:10,自引:0,他引:10  
A microcolumn assay for ganglioside GM1 β-galactosidase (EC 3.2.1.23) has been developed using GM1 tritiated exclusively in the terminal galactose residue. The reaction is stimulated up to 100-fold by anionic and cationic detergents; this stimulation is inhibited by neutral detergents. 4-Methylumbelliferyl β-d-galactopyranoside is hydrolyzed about seven times more rapidly than GM1 in human brain (gray matter) and liver. Agarose gel filtration separated two forms of GM1 β-galactosidase in both brain and liver. The major form (ganglioside GM1 β-galactosidase A) had a molecular weight of 60–70 × 103 and the minor form (ganglioside GM1 β-galactosidase B) 600–800 × 103. The liver and brain GM1 β-galactosidases and 4-methylumbelliferyl β-galactosidase A cochromatographed on fractionation. The two forms of the enzyme in liver isolated by gel filtration corresponded to the two major forms found on starch gel electrophoresis and were converted to electrophoretically slower-moving forms after treatment with neuraminidase (EC 3.2.1.8, Cl. perfringens) suggesting that both are sialylated glycoproteins. The activity of GM1 β-galactosidase in the brain and liver tissue of patients with GM1 gangliosidosis Types I and II was less than 2% of control values. The mutation in each GM1 gangliosidosis appears to result in a severe reduction of activity of two ganglioside GM1 β-galactosidases.  相似文献   

3.
The BamA protein of Escherichia coli plays a central role in the assembly of β-barrel outer membrane proteins (OMPs). The C-terminal domain of BamA folds into an integral outer membrane β-barrel, and the N terminus forms a periplasmic polypeptide transport-associated (POTRA) domain for OMP reception and assembly. We show here that BamA misfolding, caused by the deletion of the R44 residue from the α2 helix of the POTRA 1 domain (ΔR44), can be overcome by the insertion of alanine 2 residues upstream or downstream from the ΔR44 site. This highlights the importance of the side chain orientation of the α2 helix residues for normal POTRA 1 activity. The ΔR44-mediated POTRA folding defect and its correction by the insertion of alanine were further demonstrated by using a construct expressing just the soluble POTRA domain. Besides misfolding, the expression of BamA(ΔR44) from a low-copy-number plasmid confers a severe drug hypersensitivity phenotype. A spontaneous drug-resistant revertant of BamA(ΔR44) was found to carry an A18S substitution in the α1 helix of POTRA 1. In the BamA(ΔR44, A18S) background, OMP biogenesis improved dramatically, and this correlated with improved BamA folding, BamA-SurA interactions, and LptD (lipopolysaccharide transporter) biogenesis. The presence of the A18S substitution in the wild-type BamA protein did not affect the activity of BamA. The discovery of the A18S substitution in the α1 helix of the POTRA 1 domain as a suppressor of the folding defect caused by ΔR44 underscores the importance of the helix 1 and 2 regions in BamA folding.  相似文献   

4.
As the principal component of high-density lipoprotein (HDL), apolipoprotein (apo) A-I plays essential roles in lipid transport and metabolism. Because of its intrinsic conformational plasticity and flexibility, the molecular details of the tertiary structure of lipid-free apoA-I have not been fully elucidated. Previously, we demonstrated that the stability of the N-terminal helix bundle structure is modulated by proline substitution at the most hydrophobic region (residues around Y18) in the N-terminal domain. Here we examine the effect of proline substitution at S55 located in another relatively hydrophobic region compared to most of the helix bundle domain to elucidate the influences on the helix bundle structure and lipid interaction. Fluorescence measurements revealed that the S55P mutation had a modest effect on the stability of the bundle structure, indicating that residues around S55 are not pivotally involved in the helix bundle formation, in contrast to the insertion of proline at position 18. Although truncation of the C-terminal domain (Δ190-243) diminishes the lipid binding of apoA-I molecule, the mutation S55P in addition to the C-terminal truncation (S55P/Δ190-243) restored the lipid binding, suggesting that the S55P mutation causes a partial unfolding of the helix bundle to facilitate lipid binding. Furthermore, additional proline substitution at Y18 (Y18P/S55P/Δ190-243), which leads to a drastic unfolding of the helix bundle structure, yielded a greater lipid binding ability. Thus, proline substitutions in the N-terminal domain of apoA-I that destabilized the helix bundle promoted lipid solubilization. These results suggest that not only the hydrophobic C-terminal helical domain but also the stability of the N-terminal helix bundle in apoA-I are important modulators of the spontaneous solubilization of membrane lipids by apoA-I, a process that leads to the generation of nascent HDL particles.  相似文献   

5.
Summary A virally transformed, ganglioside GM1-deficient cell line binds 2% of the cholera toxin (choleragen) bound by the parent, line and is less responsive to choleragen with respect to adenylate cyclase stimulation. This biological response is maximal when 10% of choleragen-binding sites in the transformed line, or 0.5% in the parent line, are occupied. In contrast, in isolated fat cells saturation of binding and adenylate cyclase stimulation are seen at very similar concentrations.Incubation of ganglioside GM1 with intact cells increases choleragen binding (defined here as ganglioside incorporation) in the transformed cell line but does not enhance the biological response to choleragen. Stimulation of adenylate cyclase is enhanced in isolated fat cells, however, by exogenous ganglioside GM1. The binding and cyclase response in fat cells can be reduced by the addition of the inactive analog and competitive antagonist, choleragenoid, and there is recovery of the enzyme response and binding upon subsequent addition of exogenous GM1. Failure of enhancement in the transformed cell line is explained by the presence of a five- to tenfold excess of binding sites over the number required for the full biological effect of choleragen. Cells with a large excess of toxin receptors are relatively refractory to the blocking effects of choleragenoid on biological responses. Notably, untransformed cells, which contain large quantities of toxin receptor, cannot incorporate exogenously added ganglioside GM1. These findings suggest the possible existence in the cytoplasmic membrane of specific molecular structures, present in finite and limited number, for recognizing and accepting ganglioside molecules exposed to the external medium.  相似文献   

6.
The major virulence factor of enterotoxigenic Escherichia coli is the heat-labile enterotoxin (LT), an AB5 toxin closely related to the cholera toxin. LT consists of six subunits, the catalytically active A-subunit and five B-subunits arranged as a pentameric ring (LTB), which enable the toxin to bind to the epithelial cells in the intestinal lumen. LTB has two recognized binding sites; the primary binding site is responsible for anchoring the toxin to its main receptor, the GM1-ganglioside, while the secondary binding site recognizes blood group antigens. Herein, we report the 1H, 13C, 15N main chain assignment of LTB from human isolates (hLTB; 103 a.a. per subunit, with a total molecular mass of 58.5 kDa). The secondary structure was predicted based on 13C′, 13Cα, 13Cβ, 1HN and 15N chemical shifts and compared to a published crystal structure of LTB. Neolactotetraose (NEO) was titrated to hLTB and chemical shift perturbations were measured. The chemical shift perturbations were mapped onto the crystal structure, confirming that NEO binds to the primary binding site of hLTB and competes with GM1-binding. Our new data further lend support to the hypothesis that binding at the primary binding site is transmitted to the secondary binding site of the toxin, where it may influence the binding to blood group antigens.  相似文献   

7.
E O'Keefe  P Cuatrecasas 《Life sciences》1977,21(11):1649-1653
Ganglioside GM1, which can insert spontaneously into the membrane of intact cells, has been measured after insertion into transformed fibroblasts by cholera toxin (choleragen) binding, for which ganglioside GM1 is the natural receptor. Choleragen binding is not altered in starved, quiescent cells over a four-day period. Dividing cells show decreased binding in proportion to cell division. Thus, neither dividing nor quiescent cells appear to metabolize or otherwise degrade this membrane component.  相似文献   

8.
The γ subunit located at the center of ATP synthase (FOF1) plays critical roles in catalysis. Escherichia coli mutant with Pro substitution of the γ subunit residue γLeu218, which are located the rotor shaft near the c subunit ring, decreased NADH-driven ATP synthesis activity and ATP hydrolysis-dependent H+ transport of membranes to ~60% and ~40% of the wild type, respectively, without affecting FOF1 assembly. Consistently, the mutant was defective in growth by oxidative phosphorylation, indicating that energy coupling is impaired by the mutation. The ε subunit conformations in the γLeu218Pro mutant enzyme were investigated by cross-linking between cysteine residues introduced into both the ε subunit (εCys118 and εCys134, in the second helix and the hook segment, respectively) and the γ subunit (γCys99 and γCys260, located in the globular domain and the carboxyl-terminal helix, respectively). In the presence of ADP, the two γ260 and ε134 cysteine residues formed a disulfide bond in both the γLeu218Pro mutant and the wild type, indicating that the hook segment of ε subunit penetrates into the α3β3-ring along with the γ subunits in both enzymes. However, γ260/ε134 cross-linking in the γLeu218Pro mutant decreased significantly in the presence of ATP, whereas this effect was small in the wild type. These results suggested that the γ subunit carboxyl-terminal helix containing γLeu218 is involved in the conformation of the ε subunit hook region during ATP hydrolysis and, therefore, is required for energy coupling in FOF1.  相似文献   

9.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   

10.
Human glutathione transferase A1-1 (GST A1-1) has a flexible C-terminal segment that forms a helix (α9) closing the active site upon binding of glutathione and a small electrophilic substrate such as 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of active-site ligands, the C-terminal segment is not fixed in one position and is not detectable in the crystal structure. A key residue in the α9-helix is Phe 220, which can interact with both the enzyme-bound glutathione and the second substrate, and possibly guide the reactants into the transition state. Mutation of Phe 220 into Ala and Thr was shown to reduce the catalytic efficiency of GST A1-1. The mutation of an additional residue, Phe 222, caused further decrease in activity. The presence of a viscosogen in the reaction medium decreased the kinetic parameters kcat and kcat/Km for the conjugation of CDNB catalyzed by wild-type GST A1-1, in agreement with the view that product release is rate limiting for the substrate-saturated enzyme. The mutations cause a decrease of the viscosity dependence of both kinetic parameters, indicating that the motion of the α9-helix is linked to catalysis in wild-type GST A1-1. The isomerization reaction with the alternative substrate Δ5-androstene-3,17-dione (AD) is affected in a similar manner by the viscosogens. The transition state energy of the isomerization reaction, like that of the CDNB conjugation, is lowered by Phe 220 as indicated by the effects of the mutations on kcat/Km. The results demonstrate that Phe 220 and Phe 222, in the dynamic C-terminal segment, influence rate-determining steps in the catalytic mechanism of both the substitution and the isomerization reactions.  相似文献   

11.
Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac IKS potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1‐helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1‐conjugated ubiquitin and the HECT ubiquitin‐binding patch pulls the α1‐helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the IKS channel, thus confirming the functional importance of E3‐ligase autoinhibition.  相似文献   

12.
Continuing the studies on structural requirements of bradykinin antagonists, it has been found that analogues with dehydrophenylalanine (ΔPhe) or its ring‒substituted analogues (ΔPhe(X)) at position 5 act as antagonists on guinea pig pulmonary artery, and on guinea pig ileum. Because both organs are considered to be bradykinin B2receptor tissues, the analogues with ΔPhe or ΔPhe(X) at position 5, but without any replacement at position 7, seem to represent a new structural type of B2receptor antagonist. All the analogues investigated act as partial antagonists; they inhibit the bradykinin‒induced contraction at low concentrations and act as agonists at higher concentrations. Ring substitutions by methyl groups or iodine reduce both the agonistic and antagonistic activity. Only substitution by fluorine gives a high potency. Incorporation of ΔPhe into different representative antagonists with key modifications at position 7 does not enhance the antagonist activity of the basic structures, with one exception. Only the combination of ΔPhe at position 5 with D Phe at position 7 increases the antagonistic potency on guinea pig ileum by about one order of magnitude. Radio‒ligand binding studies indicate the importance of position 5 for the discrimination of B2receptor subtypes. The binding affinity to the low‒affinity binding site (KL) was not significantly changed by replacement of Phe by ΔPhe. In contrast, ring‒methylation of ΔPhe results in clearly reduced binding to KL. The affinity to the high‒affinity binding site (KH) was almost unchanged by the replacement of Phe in position 5 by ΔPhe, whereas the analogue with 2‒methyl‒dehydrophenylalanine completely failed to detect the KH‒site. The peptides were synthesized on the Wang‒resin according to the Fmoc/Butstrategy using Mtr protection for the side chain of Arg. The dehydrophenylalanine analogues were prepared by a strategy involving PyBop couplings of the dipeptide unit Fmoc‒Gly‒ΔPhe(X)‒OH to resin‒bound fragments. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
《Biophysical journal》2021,120(24):5530-5543
Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.  相似文献   

14.
Values for the thermodynamic quantities, ΔH° = 11.8 ± 2.0 Kcal/mole and ΔS° = 43.6 ± 6.0 e.u., of the 3-13 helix–coil equilibrium of isolated S-peptide (19 residue N-terminal fragment of ribonuclease A) in aqueous solution (3 m M, 1M NaCl, pD 5.4) have been determined from a joint analysis of the Thr 3γ, Ala 6β, Phe 8meta, and Phe 8para 1H chemical shift vs temperature curves (?7 to 80°C) in several aqueous–trifluorethanol mixtures. Chemical shifts in the coil and in the helix have been determined for up to 16 protons belonging to the 3-13 fragment. Thermodynamic parameters have also been determined for C-peptide (13 residue fragment) and a number of S-peptide derivatives. From the variation of the values of the thermodynamic parameters at pD 2.5, 5.4, and 8.0, a quantitation of the two helix-stabilizing side-chain interactions can be made: (1) Δ(ΔH°) ? 5 Kcal/mole and Δ(ΔS°) ? 18 e.u. for the salt bridge Glu 2? … Arg 10+ and (2) Δ(ΔH°) ? 3 Kcal/mole and Δ(ΔS°) = 9 e.u. for the one in which the His 12+ imidazolium group is involved, presumably a partial stacking with the Phe 8 side chain.  相似文献   

15.
Pseudomonas aeruginosa infection is a leading cause of deteriorationof pulmonary function in patients with cystic fibrosis (CF).The interaction of the bacterium with CF and non-CF tracheobronchialmucins was examined to understand the biochemical basis forthe high susceptibility of the lungs of CF patients to infectionby P.aeruginosa. The binding of radiolabelled bacteria to puremucins in solid-phase assays was not significantly above non-specificbinding to various blocking agents, such as bovine serum albumin,Tween 20, milk powder and polyvinyl pyrrolidine. Further, therewas a tendency for the bacteria to be excluded from plasticwells and membranes coated with mucin. Therefore, an indirectapproach involving the binding of radiolabelled P.aeruginosato asialo GM1 ganglioside, the putative receptor for the bacteriaon tracheal cells, was used to compare the interaction of CFand non-CF mucins with the bacteria. Highly purified preparationsof CF mucin were consistently better inhibitors of the bindingof the bacteria to asialo GM1 ganglioside than non-CF mucinpreparations. In the case of the binding of a stable mucoidstrain, the difference was statistically significant (P <0.001) at all concentrations of mucin tested. For the non-mucoidstrain, the difference was significant only at the higher concentrations.Of the saccharides tested similarly, sialyl lactose and theoligosaccharide portion of asialo GM1 were found to be goodinhibitors. The increased binding of the bacteria to CF mucinwas further confirmed by a solution binding assay in which thebinding of 125I-labelled mucin to unlabelled bacteria was determined.The binding of the bacteria to labelled CF and non-CF mucincould be inhibited by an excess of unlabelled human tracheobronchialmucin, but not by unrelated mucins, hyaluronic acid, alginicacid, bovine serum albumin and tetramethyl urea. The higherbinding of CF mucin, particularly to the mucoid strain of P.aeruginosa,is interesting and provides a model system to further investigatethe biochemical parameters of the interaction. asialo GM1 ganglioside cystic fibrosis Pseudomonas aeruginosa respiratory mucins saccharide inhibitors.  相似文献   

16.
17.
Deletion of the transmembrane domain (TM-domain) of Archaeoglobus fulgidus LonB protease (Archaeoglobus fulgidus (AfLon)) was shown to result in uncontrollable activation of the enzyme proteolytic site and in vivo autolysis yielding a stable and functionally inactive fragment consisting of both α-helical and proteolytic domains (αP). The ΔTM-AfLon-S509A enzyme form, obtained by site-directed mutagenesis of the catalytic Ser residue, is capable of recombination with the αP fragment. The mixed oligomers were shown to be proteolytically active, which indicates a crucial role of subunit interactions in the activation of the AfLon proteolytic site. The thermophilic nature of AfLon protease was found to be due to the special features of the enzyme activity regulation, the structure of ATPase domain, and the quaternary structure.  相似文献   

18.
In its dimeric form neuropeptide Y (NPY) folds into a compact structure in which the antiparallel oriented proline and α-helices apparently associate to form a primitive hydrophobic core. To investigate the contribution of helical stability to the receptor binding activity of NPY and its N-terminal deletion fragments, we synthesized and studied the solution conformational properties and in vitro activities of NPY, Nα-acetyl-NPY2–36, NPY15–36, Nα-propinonly-NPY15–36, and Nα-succinyl-NPY15–36 is significantly less helical than both NPY and Nα-acetyl-NPY2–36, and this decreased helical potential is attributed of the absence of the intramolecular stabilizing interaction afforded by the proline helix in the latter analogues. However, in accord with the helix dipole model, the helical potential of NPY15–36 is significantly increased by N-terminal succinlyation, whereas propionylation has no effect. In addition to an increase in helical potential, Nα-succinyl-NPY15–36 is 2.5 and 4.6 times more active than NPY15–36 and Nα-propionly-NPY15–36, respectively and is equipotent with Nα-acteyl-NPY2–36 in displacing 1mM[3H]-NPY from specific binding sites in rat brain membranes. The demonstration of positive correlation between % α-helix content and in vitro binding activity suggests that the helical potential of N-terminal NPY deletion fragments contributes to their in vitro activity in the rat brain, and that a second role of the proline helix might be to stabilize the receptor-active conformation of the NPY α-helix. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested while asialo-GM1, neuraminic acid, N-acetylneuramin-lactose, galactosyl-ceramide, and sulfatide were ineffective. In conclusion, the data demonstrate the capacity of exogenous gangliosides to interact with FGF-2. This interaction involves the COOH terminus of the FGF-2 molecule and depends on the structure of the oligosaccharide chain and on the presence of sialic acid residue(s) in the ganglioside molecule. Exogenous gangliosides act as FGF-2 antagonists when added to endothelial cell cultures. Since gangliosides are extensively shed by tumor cells and reach elevated levels in the serum of tumor-bearing patients, our data suggest that exogenous gangliosides may affect endothelial cell function by a direct interaction with FGF-2, thus modulating tumor neovascularization.  相似文献   

20.
A substantial amount of the cholera toxin which binds to the surface of mouse fibroblasts resists solubilization by neutral detergents and remains associated with Triton X-100 cytoskeletons prepared by extraction of monolayer cultures. The observation is surprising given that the receptor for cholera toxin is a ganglioside (GM1), and that membrane lipids are often assumed to be quantitatively extracted from Triton X-100 cytoskeletons. Indeed such preparations from mouse fibroblasts contain GM1, and approx. 20% of the total cellular phospholipid and ganglioside. The observations are discussed in terms of the current trend to assume that detergent insolubility implies an association with the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号