共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
CDDP [cisplatin or cis-diamminedichloroplatinum(II)] and CDDP-based combination chemotherapy have been confirmed effective against gastric cancer. However, CDDP efficiency is limited because of development of drug resistance. In this study, we found that PAK4 (p21-activated kinase 4) expression and activity were elevated in gastric cancer cells with acquired CDDP resistance (AGS/CDDP and MKN-45/CDDP) compared with their parental cells. Inhibition of PAK4 or knockdown of PAK4 expression by specific siRNA (small interfering RNA)-sensitized CDDP-resistant cells to CDDP and overcome CDDP resistance. Combination treatment of [the inhibitor of PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B or PKB) pathway] or PD98509 {the inhibitor of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathway} with PF-3758309 (the PAK4 inhibitor) resulted in increased CDDP efficacy compared with LY294002 or PD98509 alone. However, after the concomitant treatment of LY294002 and PD98509, PF-3758309 administration exerted no additional enhancement of CDDP cytotoxicity in CDDP-resistant cells. Inhibition of PAK4 by PF-3758309 could significantly suppress MEK/ERK and PI3K/Akt signalling in CDDP-resistant cells. Furthermore, inhibition of PI3K/Akt pathway while not MEK/ERK pathway could inhibit PAK4 activity in these cells. The in vivo results were similar with those of in vitro. In conclusion, these results indicate that PAK4 confers CDDP resistance via the activation of MEK/ERK and PI3K/Akt pathways. PAK4 and PI3K/Akt pathways can reciprocally activate each other. Therefore, PAK4 may be a potential target for overcoming CDDP resistance in gastric cancer. LY294002相似文献
4.
Kato C Kajiwara T Numazaki M Takagi H Kojima N 《Biochemical and biophysical research communications》2008,372(4):898-901
We have previously shown that liposomes coated with a neoglycolipid constructed from mannotriose and dipalmitoylphosphatidylethanolamine (Man3-DPPE) activate peritoneal macrophages to induce enhanced expression of co-stimulatory molecules and MHC class II. In this study, we investigated the signaling pathways activated by the Man3-DPPE-coated liposomes (OMLs) in a murine macrophage cell line, J774A.1. In response to OML stimulation, ERK among MAPKs was clearly and transiently phosphorylated in J774 cells. ERK phosphorylation was also induced by treatment of the cells with Man3-DPPE and Man3-BSA, but not by uncoated liposomes. In addition, rapid and transient phosphorylation of Akt and Src family kinases (SFKs) was observed in response to OMLs. OML-induced ERK phosphorylation was inhibited by specific inhibitors of PI3K and SFKs, and OML-induced Akt phosphorylation was inhibited by a inhibitor of SFKs. Therefore, OMLs may activate the PI3K/Akt pathway through phosphorylation of Src family kinases to induce ERK activation. 相似文献
5.
Hiroshi Matsuoka Masanobu Tsubaki Mitsuhiko Ogaki Tatsuki Itoh Shozo Nishida 《Experimental cell research》2009,315(12):2022-2032
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis. 相似文献
6.
Thomas D. Wright Christopher Raybuck Akshita Bhatt Darlene Monlish Suravi Chakrabarty Katy Wendekier Nathan Gartland Mohit Gupta Matthew E. Burow Patrick T. Flaherty Jane E. Cavanaugh 《Journal of cellular biochemistry》2020,121(2):1156-1168
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs. 相似文献
7.
Toumi F Neunlist M Denis MG Oreshkova T Laboisse CL Galmiche JP Jarry A 《Biochemical and biophysical research communications》2004,317(1):187-191
Vasoactive intestinal peptide (VIP) has been shown to be a key regulator of intestinal epithelial functions such as mucus and chloride secretion, paracellular permeability, and cell proliferation. However, its regulatory role in intestinal epithelial chemokine production remains unknown. The aim of this study was (1) to determine whether VIP can modulate intestinal epithelial interleukin-8 (IL-8) production and (2) to identify intracellular mediators responsible for this effect. In the human colonic epithelial cell line HT29-Cl.16E, VIP stimulates IL-8 secretion dose-dependently and IL-8 mRNA level at 10(-9) M. The protein kinase A (PKA) inhibitor PKI did not abolish the effect of VIP. However, inhibition of the ERK1/2 and p38 MAPK pathways reduced the VIP-stimulated IL-8 secretion and mRNA level. Together, our results showed that VIP stimulates IL-8 production in intestinal epithelial cells via PKA-independent and MAPK-dependent pathways. These data suggest that VIPergic pathways can play an immunomodulatory role in intestinal epithelial cells, by regulating epithelial IL-8 secretion. 相似文献
8.
Interleukin (IL)-1 beta is a pro-inflammatory cytokine that has been shown to play a pivotal role in the onset of inflammatory bowel disease (IBD), however, the molecular mechanisms underlying the production of IL-1 beta in IBD are not fully understood. We investigated dextran sulfate sodium (DSS)-induced IL-1 beta production and caspase-1 activities in murine peritoneal macrophages (pM phi). Further, the activation status of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun NH(2)-terminal kinase (JNK1/2), as well as their upstream target kinases, were examined by Western blotting. In addition, mRNA expression was assessed by RT-PCR and CXC chemokine ligand 16 (CXCL16) protein was detected by immunocytochemistry. DSS-treated pM phi released IL-1 beta protein in a time-dependent manner without affecting mRNA levels during 3-24 h, and caspase-1 activity peaked at 5 min (29-fold). IL-1 beta release and caspase-1 activity induced by DSS were significantly inhibited by a MAPK kinase 1/2 inhibitor, a p38 MAPK inhibitor, and NAC, however, not by JNK1/2 or a protein kinase C inhibitor. In addition, DSS strikingly induced the phosphorylation of p38 MAPK and ERK1/2 within 2 and 10 min, respectively. DSS also induced intracellular generation of reactive oxygen species (ROS). Pre-treatment with anti-CXCL16 for 24 h, but not anti-scavenger receptor-A, anti-CD36, or anti-CD68 antibodies, significantly suppressed DSS-induced IL-1 beta production. Our results suggest that DSS triggers the release of IL-1 beta protein from murine pM phi at a post-translational level through binding with CXCL16, ROS generation, and resultant activation of both p38 MAPK and ERK1/2 pathways, and finally caspase-1 activation. 相似文献
9.
Jiangjiang Fan Mingsheng Wu Jian Wang Dongmei Ren Jian Zhao Guotao Yang 《Journal of cellular physiology》2019,234(5):6336-6349
1,7-Bis(4-hydroxyphenyl)-1,4-heptadien-3-one (EB30) is a diarylheptanoid-like compound isolated from Viscum coloratum. This curcumin analog exhibits significant cytotoxic activity against HeLa, SGC-7901, and MCF-7 cells. However, little is known about the anticancer effects and mechanisms of EB30 in human lung cancer. The current study reports that EB30 significantly reduced the cell viability of A549 and NCI-H292 human lung cancer cells. Further examination revealed that EB30 not only induced cell cycle arrest and promoted the generation of reactive oxygen species (ROS) but also induced cell apoptosis through the intrinsic and extrinsic signaling pathways. Furthermore, EB30 upregulated the expression levels of p-ERK1/2 and p-P90RSK, whereas downregulating the phosphorylation of Akt and P70RSK. Cell viability was further inhibited by the combination of EB30 with LY294002 (a specific PI3K inhibitor) or U0126 (a MEK inhibitor). The current study indicates that EB30 is a potential anticancer agent that induces cell apoptosis via suppression of the PI3K/Akt pathway and activation of the ERK1/2 pathway. 相似文献
10.
Interleukin 15 induces the signals of epidermal proliferation through ERK and PI 3-kinase in a human epidermal keratinocyte cell line,HaCaT 总被引:3,自引:0,他引:3
Yano S Komine M Fujimoto M Okochi H Tamaki K 《Biochemical and biophysical research communications》2003,301(4):841-847
Interleukin 15 (IL-15) is a potent stimulator of proliferation and an inhibitor of apoptosis in lymphocytes. We attempted to elucidate the mechanism of IL-15 function in HaCaT keratinocytes. We found that 5-bromo-2(')-deoxyuridine incorporation increased in a dose-dependent manner with IL-15. This was blocked by MEK inhibitor U0126 or PI 3-K inhibitor LY294002. ERK1/2 and Akt phosphorylation by IL-15 were detected in a dose- and time-dependent manner. U0126 and LY294002 abolished ERK1/2 and Akt phosphorylation, respectively. DNA fragmentation and Annexin V binding accompanied by UVB-induced apoptosis were reduced by 30-50% with IL-15. Taken together, IL-15 induced cellular proliferation and had an anti-apoptotic effect on keratinocytes, in which ERK1/2 and Akt phosphorylation played crucial roles. The signal transduction pathways of IL-15 in keratinocytes were partially elucidated; they share a substantial part with growth signals induced by EGF. These results suggest a therapeutic approach to inflammatory skin diseases by controlling these signals. 相似文献
11.
12.
Up-regulation of bone morphogenetic proteins (BMPs) and their receptors by tumor is an important hallmark in cancer progression, as it contributes through autocrine and paracrine mechanisms to tumor development, invasion, and metastasis. Generally, increased motility and invasion are positively correlated with the epithelial-mesenchymal transition (EMT). The purpose of the present study was to determine whether BMP-2 signaling to induce gastric cancer cells to undergo EMT-mediated invasion might pass through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Herein we showed that gastric cancer cell lines express all the components of BMP-2 signaling, albeit to different extents. Moreover, an increased concentration of BMP-2 strongly enhanced motility and invasiveness in gastric cancer cells, whereas no increase was observed in cells treated with either Noggin (a BMP-2 inhibitor) or BMP-2 blocking antibodies. The stimulation of BMP-2 in gastric cancer cells induces a full EMT characterized by Snail induction, E-cadherin delocalization and down-regulation, and up-regulation of mesenchymal and invasiveness markers. Furthermore, blockade of BMP-2 signaling by Noggin or BMP-2 blocking antibodies also restored these changes in EMT markers. In addition, phosphorylation of Akt was also enhanced by treatment with BMP-2, but not Noggin or BMP-2 blocking antibodies. Pretreatment of gastric cancer cells with PI-3 kinase/Akt kinase inhibitor (kinase-dead Akt [DN-Akt], Akt siRNA, or LY294002) significantly inhibited BMP-2-induced EMT and invasiveness. Overall, our studies suggest that BMP-2 promotes motility and invasion of gastric cancer cells by activating PI-3 kinase/Akt and that targeting of this signaling pathway may provide therapeutic opportunities in preventing metastasis mediated by BMP-2. 相似文献
13.
Akshita B. Bhatt Thomas D. Wright Van Barnes Suravi Chakrabarty Margarite D. Matossian Erin Lexner Deniz A. Ucar Lucio Miele Patrick T. Flaherty Matthew E. Burow Jane E. Cavanaugh 《Translational oncology》2021,14(6):101046
The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies.In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases. 相似文献
14.
The hyaluronan-binding protease (HABP) is a serine protease in human plasma which is structurally related to plasminogen activators, coagulation factor XII and hepathocyte growth factor activator. It can in vitro activate the coagulation factor FVII, kininogen and plasminogen activators. The present study was initiated to gain a more complete picture of the cell-associated activities of this fibrinolysis-related protease. Treatment of lung fibroblasts with HABP lead to a rapid activation of signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway with c-Raf, MEK and ERK1/2. Additionally the activation of the PI3K/Akt pathway and of several translation-related proteins was found. Proliferation assays confirmed the assumption of a strong growth-stimulating effect of HABP on human lung and skin fibroblasts. Intracellular signalling and growth stimulation were strongly dependent on the proteolytic activity of HABP. Stimulation of signalling and proliferation by HABP involved the fibroblast growth factor receptor 1 (FGFR-1). HABP-stimulated proliferation of lung fibroblasts MRC-5 was accompanied by a significant intracellular increase in basic fibroblast growth factor (bFGF), the major ligand of FGFR-1; bFGF could however not be identified in the supernatant of HABP-treated cells. Though, the conditioned medium from HABP-treated cells showed a strong growth-promoting activity on quiescent fibroblasts, indicating the release of a yet unknown growth factor amplifying the initial growth stimulus. In a two-dimensional wound model HABP stimulated the invasion of fibroblasts into a scratch area, adding a strong pro-migratory activity to this plasma protease. In summary, HABP exhibits a significant growth factor-like activity on quiescent human lung and dermal fibroblasts. Our findings suggest that this fibrinolysis-related plasma protease may participate in physiologic or pathologic processes where cell proliferation and migration are pivotal, like tissue repair, vascular remodelling, wound healing or tumor development. 相似文献
15.
目的:用低血清培养液来模拟肾脏供血不足的营养不良状态,研究低浓度哇巴因对低血清培养下OK细胞(负鼠肾小管上皮细胞)增殖的影响。方法:用低浓度哇巴因(1-30n M)处理0.2%血清培养下OK细胞,MTT实验和Brdu掺入法检测哇巴因对OK细胞增殖的影响;Western blot检测Akt和ERK1/2的磷酸化水平;用LY294002和PD98059分别抑制PI3K/Akt和ERK1/2蛋白激酶活性,观察抑制PI3K/Akt和ERK1/2对哇巴因促进OK细胞增殖的影响。结果:低浓度哇巴因(1-30n M)促进OK细胞的增值,上调OK细胞中Akt和ERK1/2磷酸化水平。用LY294002和PD98059特异抑制Akt和ERK1/2的活化能够抑制哇巴因的促增殖作用。结论:低浓度哇巴因(1-10n M)能够促进OK细胞的增值,PI3K/Akt和ERK1/2信号通路参与哇巴因对OK细胞促增殖作用的调节。 相似文献
16.
Kwon DS Kwon CH Kim JH Woo JS Jung JS Kim YK 《European journal of cell biology》2006,85(11):1189-1199
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion. 相似文献
17.
Lin CH Cheng HW Ma HP Wu CH Hong CY Chen BC 《The Journal of biological chemistry》2011,286(12):10483-10494
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells. 相似文献
18.
Jia-cheng Xu Tian-yin Chen Le-tai Liao Tao Chen Quan-lin Li Jia-xin Xu Jian-wei Hu Ping-hong Zhou Yi-qun Zhang 《International journal of biological sciences》2021,17(1):259
Esophageal squamous cell carcinoma (ESCC) causes aggressive and lethal malignancies with extremely poor prognoses, and accounts for about 90% of cases of esophageal cancer. Neuropilin and tolloid-like 2 (NETO2) protein coding genes have been associated with various human cancers. Nevertheless, little information is reported about the phenotypic expression and its clinical significance in ESCC progression. Here, our study found that NETO2 expression in ESCC patients was associated with tumor clinical stage and lymph node metastasis status. Gain-of-function and loss-of-function analyses showed that NETO2 stimulated ESCC cell proliferation while suppressing apoptosis in vitro and enhanced tumor growth in vivo. Moreover, knockdown of NETO2 significantly inhibited migration and invasion in combination with regulation of epithelial-mesenchymal transition (EMT) related markers. Mechanistically, overexpression of NETO2 increased the phosphorylation of ERK, PI3k/AKT, and Nuclear factor erythroid-2-related factor 2(Nrf2), whereas silencing NETO2 decreased the phosphorylation of these targets. Our data suggest that Nrf2 was a critical downstream event responsible for triggering the PI3K/AKT and ERK signaling pathways and plays a crucial role in NETO2-mediated tumorigenesis. Taken together, NETO2 acts as an oncogene and might serve as a novel therapeutic target or prognostic biomarker in ESCC patients. 相似文献
19.
Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3′-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies. 相似文献
20.
为探讨磷脂酰乙醇胺-N-甲基转移酶2(PEMT2)过表达抑制大鼠肝癌细胞增殖的机制,构建了PEMT2高表达细胞克隆,并采用半定量RT-PCR、免疫细胞化学及流式细胞仪技术,研究了PEMT2过表达对PI3K/Akt信号转导途径的影响.实验结果显示,PEMT2过表达可抑制细胞PI3K和Akt的表达,并诱导细胞凋亡.这一结果提示,PI3K/Akt信号转导途径下调可能是PEMT2抑制肝癌细胞增殖的部分机制. 相似文献