首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyglutamine diseases are neurodegenerative diseases caused by the expansion of polyglutamine (polyQ) tracts within different proteins. Although multiple pathways have been found to modulate aggregation of the expanded polyQ proteins, the mechanisms by which polyQ tracts induced neuronal cell death remain unknown. We conducted a genome-wide genetic screen to identify genes that suppress polyQ-induced neurodegeneration when mutated. Loss of the scaffold protein RACK1 alleviated cell death associated with the expression of polyQ tracts alone, as well as in models of Machado-Joseph disease (MJD) and Huntington’s disease (HD), without affecting proteostasis of polyQ proteins. A genome-wide RNAi screen for modifiers of this rack1 suppression phenotype revealed that knockdown of the E3 ubiquitin ligase, POE (Purity of essence), further suppressed polyQ-induced cell death, resulting in nearly wild-type looking eyes. Biochemical analyses demonstrated that RACK1 interacts with POE and ERK to promote ERK degradation. These results suggest that RACK1 plays a key role in polyQ pathogenesis by promoting POE-dependent degradation of ERK, and implicate RACK1/POE/ERK as potent drug targets for treatment of polyQ diseases.  相似文献   

2.
A network of chaperones and ubiquitin ligases sustain intracellular proteostasis and is integral in preventing aggregation of misfolded proteins associated with various neurodegenerative diseases. Using cell-based studies of polyglutamine (polyQ) diseases, spinocerebellar ataxia type 3 (SCA3) and Huntington’s disease (HD), we aimed to identify crucial ubiquitin ligases that protect against polyQ aggregation. We report here that Praja1 (PJA1), a Ring-H2 ubiquitin ligase abundantly expressed in the brain, is diminished when polyQ repeat proteins (ataxin-3/huntingtin) are expressed in cells. PJA1 interacts with polyQ proteins and enhances their degradation, resulting in reduced aggregate formation. Down-regulation of PJA1 in neuronal cells increases polyQ protein levels vis-a-vis their aggregates, rendering the cells vulnerable to cytotoxic stress. Finally, PJA1 suppresses polyQ toxicity in yeast and rescues eye degeneration in a transgenic Drosophila model of SCA3. Thus, our findings establish PJA1 as a robust ubiquitin ligase of polyQ proteins and induction of which might serve as an alternative therapeutic strategy in handling cytotoxic polyQ aggregates.  相似文献   

3.
Neuronal homeostasis requires a balance between anabolic and catabolic processes. Eukaryotic cells use two distinct systems for the degradation of unused proteins: the ubiquitin-proteasome system and the autophagic system. The autophagic system is also necessary for the degradation of bulk amounts of proteins and organelles. We have searched for new autophagy-related genes in the Caenorhabditis elegans genome and investigated their role in a polyglutamine (polyQ) disease model. Here, we have shown that inactivation of these genes intensified the toxicity of expanded polyQ in C. elegans neurons and muscles, and at the same time inactivation of CeTor reduced the polyQ toxicity.  相似文献   

4.
Huntington''s disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein which results in its abnormal aggregation in the nervous system. Huntingtin aggregates are linked to toxicity and neuronal dysfunction, but a comprehensive understanding of the aggregation mechanism in vivo remains elusive. Here, we examine the morphology of polyQ aggregates in Caenorhabditis elegans mechanosensory neurons as a function of age using confocal and fluorescence lifetime imaging microscopy. We find that aggregates in young worms are mostly spherical with homogenous intensity, but as the worm ages aggregates become substantially more heterogeneous. Most prominently, in older worms we observe an apparent core/shell morphology of polyQ assemblies with decreased intensity in the center. The fluorescence lifetime of polyQ is uniform across the aggregate indicating that the dimmed intensity in the assembly center is most likely not due to quenching or changes in local environment, but rather to displacement of fluorescent polyQ from the central region. This apparent core/shell architecture of polyQ aggregates in aging C. elegans neurons contributes to the diverse landscape of polyQ aggregation states implicated in Huntington''s disease.  相似文献   

5.
Polyglutamine (polyQ) expansion leads to protein aggregation and neurodegeneration in Huntington's disease and eight other inherited neurological conditions. Expansion of the polyQ tract beyond a threshold of 37 glutamines leads to the formation of toxic nuclear aggregates. This suggests that polyQ expansion causes a conformational change within the protein, the nature of which is unclear. There is a trend in the disease proteins that the polyQ tract is located external to but not within a structured domain. We have created a model polyQ protein in which the repeat location mimics the flexible environment of the polyQ tract in the disease proteins. Our model protein recapitulates the aggregation features observed with the clinical proteins and allows structural characterization. With the use of NMR spectroscopy and a range of biophysical techniques, we demonstrate that polyQ expansion into the pathological range has no effect on the structure, dynamics, and stability of a domain adjacent to the polyQ tract. To explore the clinical significance of repeat location, we engineered a variant of the model protein with a polyQ tract within the domain, a location that does not mimic physiological context, demonstrating significant destabilization and structural perturbation. These different effects highlight the importance of repeat location. We conclude that protein misfolding within the polyQ tract itself is the driving force behind the key characteristics of polyQ disease, and that structural perturbation of flanking domains is not required.  相似文献   

6.
7.
Osmolytes stabilize protein structure and suppress protein aggregation. The mechanism of how osmolytes impact polyglutamine (polyQ) aggregation implicated in Huntington's disease was studied. By using a reverse‐phase chromatography assay, we show that methylamines‐trimethylamine N‐oxide and betaine are generic in enhancing polyQ aggregation, while a disaccharide trehalose and an amino acid citrulline moderately retard polyQ aggregation in a sequence specific manner. Despite the altered kinetics, the fundamental nucleation mechanism of polyQ aggregation and the nature of end stage aggregates remains unaffected. These results highlight the importance of using osmolytes as modulatory agents of polyQ aggregation.  相似文献   

8.
Proteins with an abnormally expanded polyglutamine (polyQ) stretch are prone to change their conformations, leading to their aggregation, and cause inherited neurodegenerative diseases called the polyQ diseases. Although screening for polyQ aggregation inhibitors has been extensively performed, many common false-positive hits have been identified so far. In this study, we employed surface plasmon resonance (SPR) to characterize the binding specificities and affinities of polyQ aggregation inhibitors to the expanded polyQ stretch. SPR successfully detected specific binding of polyQ binding peptide 1 (QBP1) to the expanded polyQ stretch (Kd = 5.7 μM), and non-specific binding of Congo red to polyQ proteins independent of their polyQ-length. Binding affinities of polyQ aggregation inhibitors to the expanded polyQ stretch were correlated with their inhibitory effects on polyQ aggregation. We therefore conclude that SPR is a useful technique for screening for specific polyQ aggregation inhibitors as promising therapeutic candidates for the currently untreatable polyQ diseases.  相似文献   

9.
The glutamine/asparagine (Q/N)-rich yeast prion protein Sup35 has a low intrinsic propensity to spontaneously self-assemble into ordered, β-sheet-rich amyloid fibrils. In yeast cells, de novo formation of Sup35 aggregates is greatly facilitated by high protein concentrations and the presence of preformed Q/N-rich protein aggregates that template Sup35 polymerization. Here, we have investigated whether aggregation-promoting polyglutamine (polyQ) tracts can stimulate the de novo formation of ordered Sup35 protein aggregates in the absence of Q/N-rich yeast prions. Fusion proteins with polyQ tracts of different lengths were produced and their ability to spontaneously self-assemble into amlyloid structures was analyzed using in vitro and in vivo model systems. We found that Sup35 fusions with pathogenic (≥54 glutamines), as opposed to non-pathogenic (19 glutamines) polyQ tracts efficiently form seeding-competent protein aggregates. Strikingly, polyQ-mediated de novo assembly of Sup35 protein aggregates in yeast cells was independent of pre-existing Q/N-rich protein aggregates. This indicates that increasing the content of aggregation-promoting sequences enhances the tendency of Sup35 to spontaneously self-assemble into insoluble protein aggregates. A similar result was obtained when pathogenic polyQ tracts were linked to the yeast prion protein Rnq1, demonstrating that polyQ sequences are generic inducers of amyloidogenesis. In conclusion, long polyQ sequences are powerful molecular tools that allow the efficient production of seeding-competent amyloid structures.  相似文献   

10.
Huntington disease (HD), a neurodegenerative disorder, is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats located near the N-terminus of the huntingtin (htt) protein. The expansion of the polyQ domain results in the ordered assembly of htt fragments into fibrillar aggregates that are the main constituents of inclusion bodies, which are a hallmark of the disease. This paper describes protocols for studying the aggregation of mutant htt fragments and synthetic polyQ peptides with atomic force microscopy (AFM). Ex situ AFM is used to characterize aggregate formation in protein incubation as a function of time. Methods to quickly and unambiguously distinguish specific aggregate species from complex, heterogeneous aggregation reactions based on simple morphological features are presented. Finally, the application of time lapse atomic force microscopy in solution is presented for studying synthetic model polyQ peptides, which allows for tracking the formation and fate of individual aggregates on surfaces over time. This ability allows for dynamic studies of the aggregation process and direct observation of the interplay between different types of aggregates.  相似文献   

11.
Oligomer formation and accumulation of pathogenic proteins are key events in the pathomechanisms of many neurodegenerative diseases, such as Alzheimer disease, ALS, and the polyglutamine (polyQ) diseases. The autophagy-lysosome degradation system may have therapeutic potential against these diseases because it can degrade even large oligomers. Although p62/sequestosome 1 plays a physiological role in selective autophagy of ubiquitinated proteins, whether p62 recognizes and degrades pathogenic proteins in neurodegenerative diseases has remained unclear. In this study, to elucidate the role of p62 in such pathogenic conditions in vivo, we used Drosophila models of neurodegenerative diseases. We found that p62 predominantly co-localizes with cytoplasmic polyQ protein aggregates in the MJDtr-Q78 polyQ disease model flies. Loss of p62 function resulted in significant exacerbation of eye degeneration in these flies. Immunohistochemical analyses revealed enhanced accumulation of cytoplasmic aggregates by p62 knockdown in the MJDtr-Q78 flies, similarly to knockdown of autophagy-related genes (Atgs). Knockdown of both p62 and Atgs did not show any additive effects in the MJDtr-Q78 flies, implying that p62 function is mediated by autophagy. Biochemical analyses showed that loss of p62 function delays the degradation of the MJDtr-Q78 protein, especially its oligomeric species. We also found that loss of p62 function exacerbates eye degeneration in another polyQ disease fly model as well as in ALS model flies. We therefore conclude that p62 plays a protective role against polyQ-induced neurodegeneration, by the autophagic degradation of polyQ protein oligomers in vivo, indicating its therapeutic potential for the polyQ diseases and possibly for other neurodegenerative diseases.  相似文献   

12.
The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces.  相似文献   

13.
Jia K  Hart AC  Levine B 《Autophagy》2007,3(1):21-25
Expanded polyglutamine (polyQ) proteins aggregate intracellularly in Huntington's disease and other neurodegenerative disorders. The lysosomal degradation pathway, autophagy, is known to promote clearance of polyQ protein aggregates in cultured cells. Moreover, basal autophagy in neuronal cells in mice prevents neurodegeneration by suppressing the accumulation of abnormal intracellular proteins. However, it is not yet known whether autophagy genes play a role in vivo in protecting against disease caused by mutant aggregate-prone, expanded polyQ proteins. To examine this question, we used two models of polyQ-induced toxicity in C. elegans, including the expression of polyQ40 aggregates in muscle and the expression of a human huntingtin disease fragment containing a polyQ tract of 150 residues (Htn-Q150) in ASH sensory neurons. Here, we show that genetic inactivation of autophagy genes accelerates the accumulation of polyQ40 aggregates in C. elegans muscle cells and exacerbates polyQ40-induced muscle dysfunction. Autophagy gene inactivation also increases the accumulation of Htn-Q150 aggregates in C. elegans ASH sensory neurons and results in enhanced neurodegeneration. These data provide in vivo genetic evidence that autophagy genes suppress the accumulation of polyQ aggregates and protect cells from disease caused by polyQ toxicity.  相似文献   

14.
Huntington's disease is caused by specific mutations in huntingtin protein. Expansion of a polyglutamine (polyQ) repeat of huntingtin leads to protein aggregation in neurons followed by cell death with apoptotic markers. The connection between the aggregation and the degeneration of neurons is poorly understood. Here, we show that the physiological consequences of expanded polyQ domain expression in yeast are similar to those in neurons. In particular, expression of expanded polyQ in yeast causes apoptotic changes in mitochondria, caspase activation, nuclear DNA fragmentation and death. Similar to neurons, at the late stages of expression the expanded polyQ accumulates in the nuclei and seems to affect the cell cycle of yeast. Interestingly, nuclear localization of the aggregates is dependent on functional caspase Yca1. We speculate that the aggregates in the nuclei disturb the cell cycle and thus contribute to the development of the cell death process in both systems. Our data show that expression of the polyQ construct in yeast can be used to model patho-physiological effects of polyQ expansion in neurons.  相似文献   

15.
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington''s disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.  相似文献   

16.
The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones Sis1 and Hsp104 inhibited seeding of polyQ aggregates, whereas ssa1, ssa2, and ydj1-151 mutations inhibited expansion of aggregates. The latter three mutants strongly suppressed the polyQ toxicity. Spontaneous mutants with suppressed aggregation appeared with high frequency, and in all of them the toxicity was relieved. Aggregation defects in these mutants and in sis1-85 were not complemented in the cross to the hsp104 mutant, demonstrating an unusual type of inheritance. Since Hsp104 is required for prion maintenance in yeast, this suggested a role for prions in polyQ aggregation and toxicity. We screened a set of deletions of nonessential genes coding for known prions and related proteins and found that deletion of the RNQ1 gene specifically suppressed aggregation and toxicity of polyQ. Curing of the prion form of Rnq1 from wild-type cells dramatically suppressed both aggregation and toxicity of polyQ. We concluded that aggregation of polyQ is critical for its toxicity and that Rnq1 in its prion conformation plays an essential role in polyQ aggregation leading to the toxicity.  相似文献   

17.
Huntington’s disease (HD) and other polyglutamine (polyQ) neurodegenerative diseases are characterized by neuronal accumulation of the disease protein, suggesting that the cellular ability to handle abnormal proteins is compromised. As a multi-subunit protein localized in the mitochondria of eukaryotic cells, the F0F1-ATP synthase α belongs to the family of stress proteins HSP60. Currently, mounting evidences indicate F0F1-ATP synthase α may play a role in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Recently, ATP synthase α was reported to have protective and therapeutic roles in primary cardiacmyocytes of iron-overloaded rats by lowering ROS production. However, little is understood about the role of ATP synthase α in cell death and neurodegeneration. Here, we demonstrate that overexpression of ATP synthase α suppresses huntingtin (htt) polyQ aggregation and toxicity in transfected SH-SY5Y cell lines. Overexpression of ATP synthase α is able to protect cell death caused by polyglutamine-expanded htt. Transient overexpression of ATP synthase α suppresses the aggregate formation by estimation of polyQ aggregation, Western blot analysis, and filter trap assay (FTA) in transfected SH-SY5Y cells. These results indicated that ATP synthase α has a strong inhibitory effect on polyglutamine aggregate formation and toxicity in vitro, and suggest a novel neuroprotective role of ATP synthase α.  相似文献   

18.
19.
Abnormally expanded polyglutamine (polyQ) tracts provide a gain of toxic functions to nine otherwise unrelated human proteins and induce progressive neurodegenerative diseases. Over the past ten years, it was suggested that only polyQ tracts longer than a specific threshold adopt a particular structure, which would be the cause of the apparent polyQ length-dependent toxicity threshold observed in polyQ diseases. We have used a combination of biochemical and biophysical approaches to compare the structural properties of polyQ of pathogenic and non-pathogenic lengths under various conditions. We observe that pathogenic and non-pathogenic polyQ, as soluble species and upon interaction with a partner, during aggregation, or as mature aggregates, display very similar structural properties. PolyQ length only influences the aggregation kinetics and, to a lesser extent, the stability of the aggregates. We thus propose that polyQ toxicity does not depend on a structural transition occurring above a specific threshold, but rather that polyQ tracts are inherently toxic sequences, whose deleterious effect gradually increases with their length. We discuss how polyQ properties and other cellular factors may explain the existence of an apparent polyQ length-dependent toxicity threshold.  相似文献   

20.
《Autophagy》2013,9(1):21-25
Expanded polyglutamine (polyQ) proteins aggregate intracellularly in Huntington’s disease and other neurodegenerative disorders. The lysosomal degradation pathway, autophagy, is known to promote clearance of polyQ protein aggregates in cultured cells. Moreover, basal autophagy in neuronal cells in mice prevents neurodegeneration by suppressing the accumulation of abnormal intracellular proteins. However, it is not yet known whether autophagy genes play a role in vivo in protecting against disease caused by mutant aggregate-prone, expanded polyQ proteins. To examine this question, we used two models of polyQ-induced toxicity in C. elegans, including the expression of polyQ40 aggregates in muscle and the expression of a human huntingtin disease fragment containing a polyQ tract of 150 residues (Htn-Q150) in ASH sensory neurons. Here, we show that genetic inactivation of autophagy genes accelerates the accumulation of polyQ40 aggregates in C. elegans muscle cells and exacerbates polyQ40-induced muscle dysfunction. Autophagy gene inactivation also increases the accumulation of Htn-Q150 aggregates in C. elegans ASH sensory neurons and results in enhanced neurodegeneration. These data provide in vivo genetic evidence that autophagy genes suppress the accumulation of polyQ aggregates and protect cells from disease caused by polyQ toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号