首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Coxsackievirus B3 (CVB3) is the most common causal agent of viral myocarditis, but existing drug therapies are of limited value. Application of small interfering RNA (siRNA) in knockdown of gene expression is an emerging technology in antiviral gene therapy. To investigate whether RNA interference (RNAi) can protect against CVB3 infection, we evaluated the effects of RNAi on viral replication in HeLa cells and murine cardiomyocytes by using five CVB3-specific siRNAs targeting distinct regions of the viral genome. The most effective one is siRNA-4, targeting the viral protease 2A, achieving a 92% inhibition of CVB3 replication. The specific RNAi effects could last at least 48 h, and cell viability assay revealed that 90% of siRNA-4-pretreated cells were still alive and lacked detectable viral protein expression 48 h postinfection. Moreover, administration of siRNAs after viral infection could also effectively inhibit viral replication, indicating its therapeutic potential. Further evaluation by combination found that no enhanced inhibitory effects were observed when siRNA-4 was cotransfected with each of the other four candidates. In mutational analysis of the mechanisms of siRNA action, we found that siRNA functions by targeting the positive strand of virus and requires a perfect sequence match in the central region of the target, but mismatches were more tolerated near the 3' end than the 5' end of the antisense strand. These findings reveal an effective target for CVB3 silencing and provide a new possibility for antiviral intervention.  相似文献   

3.
4.
Hepatitis B virus (HBV) infection is a major world-wide health problem. The major obstacles for current anti-HBV therapy are the low efficacy and the occurrence of drug resistant HBV mutations. Recent studies have demonstrated that combination therapy can enhance antiviral efficacy and overcome shortcomings of established drugs. In this study, the inhibitory effect mediated by combination of siRNAs targeting different sites of HBV in transgenic mice was analyzed. HBsAg and HBeAg in the sera of the mice were analyzed by enzyme-linked immunoadsorbent assay, HBV DNA by real-time PCR and HBV mRNA by RT-PCR. Our data demonstrated that all the three siRNAs employed showed marked anti-HBV effects. The expression of HBsAg and the replication of HBV DNA could be specifically inhibited in a dose-dependent manner by siRNAs. Furthermore, combination of siRNAs compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication, even though the final concentration of siRNA used for therapy was the same. Secreted HBsAg and HBeAg in the serum of mice treated with siRNA combination were reduced by 96.7 and 96.6 %, respectively. Immunohistochemical detection of liver tissue revealed 91 % reduction of HBsAg-positive cells in the combination therapy group. The combination of siRNAs caused a greater inhibition in the levels of viral mRNA and DNA (90 and 87.7 %) relative to the control group. It was noted that the siRNA3 showed stronger inhibition of cccDNA (78.6 %). Our results revealed that combination of siRNAs mediated a stronger inhibition of viral replication and antigen expression in transgenic mice than single siRNAs.  相似文献   

5.
Tick-borne encephalitis virus is the causative agent of tick-borne encephalitis, a potentially fatal neurological infection. Tick-borne encephalitis virus belongs to the family of flaviviruses and is transmitted by infected ticks. Despite the availability of vaccines, approximately 2000–3000 cases of tick-borne encephalitis occur annually in Europe for which no curative therapy is available. The antiviral effects of RNA mediated interference by small interfering RNA (siRNA) was evaluated in cell culture and organotypic hippocampal cultures. Langat virus, a flavivirus highly related to Tick-borne encephalitis virus exhibits low pathogenicity for humans but retains neurovirulence for rodents. Langat virus was used for the establishment of an in vitro model of tick-borne encephalitis. We analyzed the efficacy of 19 siRNA sequences targeting different regions of the Langat genome to inhibit virus replication in the two in vitro systems. The most efficient suppression of virus replication was achieved by siRNA sequences targeting structural genes and the 3′ untranslated region. When siRNA was administered to HeLa cells before the infection with Langat virus, a 96.5% reduction of viral RNA and more than 98% reduction of infectious virus particles was observed on day 6 post infection, while treatment after infection decreased the viral replication by more than 98%. In organotypic hippocampal cultures the replication of Langat virus was reduced by 99.7% by siRNA sequence D3. Organotypic hippocampal cultures represent a suitable in vitro model to investigate neuronal infection mechanisms and treatment strategies in a preserved three-dimensional tissue architecture. Our results demonstrate that siRNA is an efficient approach to limit Langat virus replication in vitro.  相似文献   

6.

Background

Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection.

Methods

Plasmid-based small hairpin RNA (shRNA) was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection.

Results

Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1.

Conclusion

Taken together, these data suggest the promising efficacy of anti-CHIKV shRNAs, in particular, plasmid-shRNA E1, as a novel antiviral strategy against CHIKV infection.  相似文献   

7.
Ahn J  Jun ES  Lee HS  Yoon SY  Kim D  Joo CH  Kim YK  Lee H 《Journal of virology》2005,79(13):8620-8624
We examined the ability of small interfering RNAs (siRNAs) to disrupt infection by coxsackievirus B3 (CVB3). The incorporation of siRNAs dramatically decreased cell death in permissive HeLa cells in parallel with a reduction in viral replication. Three of four siRNAs had potent anti-CVB3 activity. The present study thus demonstrates that the antiviral effect is due to the downregulation of viral replication. In addition, an effective CVB3-specific siRNA had similar antiviral effects in other related enteroviruses possessing sequence homology in the targeted region. Because the CVB3-specific siRNA is effective against other enteroviruses, siRNAs have potential for a universal antienterovirus strategy.  相似文献   

8.
9.
Chikungunya virus is a re-emerging arbovirus transmitted to humans by mosquitoes, responsible for an acute flu-like illness associated with debilitating arthralgia, which can persist for several months or become chronic. In recent years, this viral infection has spread worldwide with a previously unknown virulence. To date, no specific antivirals treatments nor vaccines are available against this important pathogen. Starting from the structures of two antiviral hits previously identified in our research group with in silico techniques, this work describes the design and preparation of 31 novel structural analogues, with which different pharmacophoric features of the two hits have been explored and correlated with the inhibition of Chikungunya virus replication in cells. Structure-activity relationships were elucidated for the original scaffolds, and different novel antiviral compounds with EC50 values in the low micromolar range were identified. This work provides the foundation for further investigation of these promising novel structures as antiviral agents against Chikungunya virus.  相似文献   

10.
Interference of hepatitis A virus replication by small interfering RNAs   总被引:5,自引:0,他引:5  
The rate of acute liver failure due to hepatitis A virus (HAV) has not decreased, and therapy of severe infections is still of major interest. Using a DNA-based HAV replicon cell culture system, we demonstrate that small interfering RNAs (siRNAs) targeted against viral sequences or a reporter gene contained in the viral genome specifically inhibit HAV RNA replication in HuhT7 cells. Combinations of siRNAs were more effective suppressors of HAV RNA replication. Also, siRNAs targeted against HAV 2C and 3D inhibited the expression of the respective protein. Expressions of endogenous beta-actin and double-stranded-specific RNA-activated serin/threonine kinase (PKR) were unaltered, demonstrating that the siRNA inhibitory effect was not connected to interferon inhibition, but rather was specifically targeted against HAV RNA. These results suggest that RNA interference might ultimately be useful in treatment of severe HAV infection with or without chronic liver diseases.  相似文献   

11.
Short interfering RNAs (siRNAs) directed against poliovirus and other viruses effectively inhibit viral replication. Although RNA interference (RNAi) may provide the basis for specific antiviral therapies, the limitations of RNAi antiviral strategies are ill defined. Here, we show that poliovirus readily escapes highly effective siRNAs through unique point mutations within the targeted regions. Competitive analysis of the escape mutants provides insights into the basis of siRNA recognition. The RNAi machinery can tolerate mismatches but is exquisitely sensitive to mutations within the central region and the 3' end of the target sequence. Indeed, specific mutations in the target sequence resulting in G:U mismatches are sufficient for the virus to escape siRNA inhibition. However, using a pool of siRNAs to simultaneously target multiple sites in the viral genome prevents the emergence of resistant viruses. Our study uncovers the elegant precision of target recognition by the RNAi machinery and provides the basis for the development of effective RNAi-based therapies that prevent viral escape.  相似文献   

12.
13.
siRNA-mediated RNA degradation has been demonstrated to act as an antiviral system in many species. Here we describe inhibition of retrovirus production by multiple siRNAs designed to target various regions of the viral genomes. Using murine leukemia virus (MuLV) as a model, we demonstrate that the virus production can be inhibited by 77% in siLTR2 (a siRNA targeting the U3 region of MuLV) expression vector transfected cells. Coexpression of siLTR2 with siPsi2 (a siRNA targeting the 3' Psi (packaging signal sequence) results in 93% suppression of the virus production, suggesting that an increased inhibition of the virus production can be achieved by coexpression of multiple siRNAs to target different regions of the viral RNA simultaneously. Our results also indicate that not all sequences of the viral RNA are equally accessible to siRNA. We show that U3 region of MuLV is more accessible to siRNA, whereas the packaging signal sequence, especially the region adjacent to 5'LTR, is less accessible to siRNA, partly as a result of the binding of Gag precursors. Furthermore, we demonstrate that coexpression of siLTR2 with siPsi2 in virus producer cells leads to 88% knockdown of viral titer, showing the benefit of coexpression of multiple siRNAs for potent suppression of virus production in the setting of an established infection. Moreover, we demonstrate that infection of MuLV in cells that stably coexpress siLTR2 with siPsi2 diminishes by 77%. Taken together, we establish that siRNA-mediated gene silencing can suppress multiple steps of the retrovirus life cycle, offering a potential for both treating virus-associated diseases and preventing viral infection.  相似文献   

14.
15.
Design of extended short hairpin RNAs for HIV-1 inhibition   总被引:6,自引:1,他引:5  
RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin constructs.  相似文献   

16.
A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.  相似文献   

17.
Small interfering RNAs (siRNAs) efficiently inhibit gene expression by RNA interference. Here, we report efficient inhibition, by both synthetic and vector-derived siRNAs, of hepatitis C virus (HCV) replication, as well as viral protein synthesis, using an HCV replicon system. The siRNAs were designed to target the 5′ untranslated region (5′ UTR) of the HCV genome, which has an internal ribosomal entry site for the translation of the entire viral polyprotein. Moreover, the 5′ UTR is the most conserved region in the HCV genome, making it an ideal target for siRNAs. Importantly, we have identified an effective site in the 5′ UTR at which ~80% suppression of HCV replication was achieved with concentrations of siRNA as low as 2.5 nM. Furthermore, DNA-based vectors expressing siRNA against HCV were also effective, which might allow the efficient delivery of RNAi into hepatocytes in vivo using viral vectors. Our results support the feasibility of using siRNA-based gene therapy to inhibit HCV replication, which may prove to be valuable in the treatment of hepatitis C.  相似文献   

18.
为了研究短双链RNA(Small interfering RNA,siRNA)对柯萨奇B组3型病毒(CVB3)复制的影响及其作用特性,合成针对CVB3基因组2B区的siRNA-2B,脂质体法转染HeLa细胞后感染CVB3病毒,观测转染效率及存留时间、毒性作用、病毒致细胞病变效应、病毒滴度、病毒RNA含量、siRNA-2B对重组基因的特异性降解及培养上清有限稀释后再感染情况.结果发现siRNA-2B能高效转染入HeLa细胞并存留长达48h,高剂量的siRNA-2B对培养细胞无明显毒性,siRNA-2B能特异性针对2B区有效地降解病毒RNA,能明显抑制病毒RNA的复制.随着转染浓度的增加,siRNA-2B的抗病毒作用逐渐增强.siRNA-2B还能明显降低CVB3的再感染能力.这些结果提示,针对基因组2B区的siRNA-2B可以明显抑制CVB3基因复制,有效控制病毒再感染,并具有高效性、特异性和量效关系等特点.为siRNA可能成为预防和治疗CVB3感染的新途径奠定基础.  相似文献   

19.
The Middle East Respiratory Syndrome Coronavirus is well known to cause respiratory syndrome and this virus was identified and isolated for the first time from Jeddah, Saudi Arabia in 2012 from infected patient. In this report, we have conducted the in-silico prediction, designing and evaluation of siRNAs targeting Middle East Respiratory Syndrome Coronavirus orf1ab gene to inhibit the virus replication. By using bioinformatics software, total twenty-one functional, off-target reduced siRNA were selected from four hundred and sixty-two siRNAs based on their greater potency and specificity. We have evaluated only seven siRNAs to analyze their performance and efficacy as antivirals by reverse transfection approach in Vero cells. There was no cytotoxicity of siRNAs at various concentrations was observed in Vero cells. Based on the real-time PCR results, better inhibition of viral replication was observed in the siRNA-1 and 4 as compared to other siRNAs. The results generated from this work provided suitable information about the efficacy of siRNAs which encouraged us to further evaluate the remaining siRNAs to determine their inhibitory effect on the virus replication. We concluded that the insilico prediction and designing resulted in the screening of potential siRNAs with better efficiency, and strength. This can be used to develop oligonucleotide-based antiviral therapeutics against MERS-CoV in the near future.  相似文献   

20.
The mosquito’s innate immune system defends against a variety of pathogens, and the conserved siRNA pathway plays a central role in the control of viral infections. Here, we show that transgenic overexpression of Dicer2 (Dcr2) or R2d2 resulted in an accumulation of 21-nucleotide viral sequences that was accompanied by a significant suppression of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) replication, thus indicating the broad-spectrum antiviral response mediated by the siRNA pathway that can be applied for the development of novel arbovirus control strategies. Interestingly, overexpression of Dcr2 or R2d2 regulated the mRNA abundance of a variety of antimicrobial immune genes, pointing to additional functions of DCR2 and R2D2 as well as cross-talk between the siRNA pathway and other immune pathways. Accordingly, transgenic overexpression of Dcr2 or R2d2 resulted in a lesser proliferation of the midgut microbiota and increased resistance to bacterial and fungal infections.

This study shows that transgenic overexpression of siRNA pathway factors in mosquitoes mediates a broad-spectrum antiviral action against human pathogenic viruses such as dengue, Zika and Chikungunya virus, with implications for novel arbovirus control strategies; the siRNA pathway also regulates antimicrobial immune responses against bacterial and fungal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号