首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures.  相似文献   

5.
The cAMP receptor protein (CRP) requires cAMP for an allosteric change and regulates more than 150 genes in Escherichia coli. In this study, the modular half of cAMP receptor protein was used to investigate the allosteric signal transmission pathway induced by cAMP binding. The activation of CRP upon cAMP binding is indicated to be realignment of the two subunits within the CRP dimer. The interaction of loop 3 and Phe136 do not involve in signal transmission.  相似文献   

6.
7.
The B4 isolectin from Griffonia simplicifolia is of great utility as a reagent for the identification of alpha-D-galactopyranosyl end groups. Its separation from isolectins containing A subunits has been greatly improved by a simple, rapid procedure using a column of N-acetylgalactosamine coupled to vinyl sulfone-activated Sepharose 4B to selectively retain the A subunit-containing isolectins. The procedure has the advantages over previous affinity procedures of speed (the isolation of B4 isolectin can be achieved in one day), simplicity, and high degree of resolution of the B4 isolectin.  相似文献   

8.
A radioimmunoassay developed for the microtubule associated protein MAP2 shows that this protein, or related polypeptides are present in all the porcine tissues studied. Nervous tissues (brain, 11 μg MAP2/mg protein; cerebellum, 9.7 μg MAP2/mg protein) contain much higher levels of MAP2 than non-nervous tissues (kidney, 104 ng MAP2/mg protein; lung 89 ng MAP2/mg protein; spleen 66 ng MAP2/mg protein; thyroid 21 ng MAP2/mg protein; liver 9.7 ng MAP2/mg protein). A heat resistant protein doublet of 300,000 with the ability to promote microtubule polymerization has been purified from pig kidney cells by affinity chromatography using MAP2 antibodies. Using a similar purification method a protein of 200,000 daltons has been isolated from Hela cells.  相似文献   

9.
10.
11.
Poly(A)-specific ribonuclease (PARN), a multi-domain dimeric enzyme, is a deadenylase in higher vertebrates and plants with the unique property of cap-dependent catalysis and processivity. We found that PARN is an allosteric enzyme, and potassium ions and the cap analogue were effectors with binding sites located at the RRM domain. The binding of K+ to the entire RRM domain led to an increase of substrate-binding affinity but a decrease in the cooperativity of the substrate-binding site, while the binding of the cap analogue decreased both the catalytic efficiency and the substrate-binding affinity. The dissimilar kinetic properties of the enzymes with and without the entire RRM domain suggested that the RRM domain played a central role in the allosteric communications of PARN regulation. The allostery is proposed to be important to the multi-level regulation of PARN to achieve precise control of the mRNA poly(A) tail length.  相似文献   

12.
Volker Zickermann 《BBA》2007,1767(5):393-400
Mitochondrial NADH:ubiquinone oxidoreductase is the largest and most complicated proton pump of the respiratory chain. Here we report the preparation and characterization of a subcomplex of complex I selectively lacking the flavoprotein part of the N-module. Removing the 51-kDa and the 24-kDa subunit resulted in loss of catalytic activity. The redox centers of the subcomplex could be reduced neither by NADH nor NADPH demonstrating that physiological electron input into complex I occurred exclusively via the N-module and that the NADPH binding site in the 39-kDa subunit and further potential nucleotide binding sites are isolated from the electron transfer pathway within the enzyme. Taking advantage of the selective removal of two of the eight iron-sulfur clusters of complex I and providing additional evidence by redox titration and site-directed mutagenesis, we could for the first time unambiguously assign cluster N1 of fungal complex I to mammalian cluster N1b.  相似文献   

13.
Juha Okkeri  Tuomas Haltia 《BBA》2006,1757(11):1485-1495
ZntA is a P-type ATPase which transports Zn2+, Pb2+ and Cd2+ out of the cell. Two cysteine-containing motifs, CAAC near the N-terminus and CPC in transmembrane helix 6, are involved in binding of the translocated metal. We have studied these motifs by mutating the cysteines to serines. The roles of two other possible metal-binding residues, K693 and D714, in transmembrane helices 7 and 8, were also addressed. The mutation CAAC → SAAS reduces the ATPase activity by 50%. The SAAS mutant is phosphorylated with ATP almost as efficiently as the wild type. However, its phosphorylation with Pi is poorer than that of the wild type and its dephosphorylation rate is faster than that of the wild type ATPase. The CPC → SPS mutant is inactive but residual phosphorylation with ATP could still be observed. The most important findings of this work deal with the prospective metal-binding residues K693 and D714: the substitution K693N eliminates the Zn2+-stimulated ATPase activity completely, although significant Zn2+-dependent phosphorylation by ATP remains. The K693N ATPase is hyperphosphorylated by Pi. ZntA carrying the change D714M has strong metal-independent ATPase activity and is very weakly phosphorylated both by ATP and Pi. In conclusion, K693 and D714 are functionally essential and appear to contribute to the metal specificity of ZntA, most probably by being parts of the metal-binding site made up by the CPC motif.  相似文献   

14.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

15.
Structural knowledge of the cystic fibrosis transmembrane conductance regulator (CFTR) requires developing methods to purify and stabilize this aggregation-prone membrane protein above 1 mg/ml. Starting with green fluorescent protein- and epitope-tagged human CFTR produced in mammalian cells known to properly fold and process CFTR, we devised a rapid tandem affinity purification scheme to minimize CFTR exposure to detergent in order to preserve its ATPase function. We compared a panel of detergents, including widely used detergents (maltosides, neopentyl glycols (MNG), C12E8, lysolipids, Chaps) and innovative detergents (branched alkylmaltosides, facial amphiphiles) for CFTR purification, function, monodispersity and stability. ATPase activity after reconstitution into proteoliposomes was 2–3 times higher when CFTR was purified using facial amphiphiles. ATPase activity was also demonstrated in purified CFTR samples without detergent removal using a novel lipid supplementation assay. By electron microscopy, negatively stained CFTR samples were monodisperse at low concentration, and size exclusion chromatography showed a predominance of monomer even after CFTR concentration above 1 mg/ml. Rates of CFTR aggregation quantified in an electrophoretic mobility shift assay showed that detergents which best preserved reconstituted ATPase activity also supported the greatest stability, with CFTR monomer half-lives of 6–9 days in MNG or Chaps, and 12–17 days in facial amphiphile. Cryoelectron microscopy of concentrated CFTR in MNG or facial amphiphile confirmed mostly monomeric protein, producing low resolution reconstructions in conformity with similar proteins. These protocols can be used to generate samples of pure, functional, stable CFTR at concentrations amenable to biophysical characterization.  相似文献   

16.
Expression of Tk antigen, a truncated carbohydrate antigen, was examined in helmith parasites. Using the monoclonal antibody LM389, this antigen was detected in extracts from Taenia hydatigena, Mesocestoides vogae (syn corti), and Taenia crassiceps. No reactivity was observed in Thysanosoma spp., Dipylidium caninum, Fasciola hepatica, and Nyppostrongylus brasiliensis. On the basis of their electrophoretic mobility, different patterns of Tk-bearing glycoproteins were observed among T. hydatigena, M. corti and T. crassiceps by immunoblotting, with certain components resolved as broad bands typical of mucin-like glycoproteins. Most Tk-reactive material remained in the 0.6 N perchloric acid-soluble fraction, confirming that Tk epitopes are carried by mucin-type glycoproteins. Immunohistochemical analysis revealed that in T. hydatigena, Tk antigen is mainly expressed in the tegument, whereas in M. corti the reactivity was principally observed in the subtegumental parenchyma. The presence of a novel tumor-associated carbohydrate antigen in invertebrates, contributes to strengthen the notion that truncated mucin-type O-glycosylation is a normal phenomenon in parasitic worms and may help identify new biological characteristics of helminth parasites.  相似文献   

17.
Effects of dexamethasone, EGF and insulin on the synthesis of rRNA and phosphorylation of nucleolin in primary cultures of adult rat hepatocytes were studied. Hepatocytes were incubated for 8 h with EGF (20 ng/ml) plus insulin (0.1 μM) and/or for 20 h with dexamethasone (1 μM) before the end of incubation. The incorporation of [3H]uridine into acid-insoluble materials and the nuclear activity of RNA polymerase I were stimulated approx. 2-fold with EGF plus insulin and these were further enhanced 2–3-times by dexamethasone, although dexamethasone alone exerted no stimulation. When hepatocytes were incubated with [32P]orthophosphate, similar enhancement by these hormones was also observed in the phosphorylation of a nucleolar protein, nucleolin, which was detected by immunoprecipitation with anti-nucleolin antibodies. The amount of nucleolin was slightly increased by EGF plus insulin in the presence of dexamethasone, but scarcely changed by treatment with EGF plus insulin or dexamethasone alone. Cycloheximide inhibited RNA synthesis to a greater or lesser degree in the case of all hepatocytes which were cultured with or without these hormonal treatments. These results indicate that the in vivo effect of glucocorticoid on rRNA synthesis and nucleolin phosphorylation in liver is primarily a direct action on parenchymal cells and requires other growth factors such as EGF and insulin.  相似文献   

18.
Previous studies have shown that Cdk5 promotes lens epithelial cell adhesion. Here we use a cell spreading assay to investigate the mechanism of this effect. As cells spread, forming matrix adhesions and stress fibers, Cdk5(Y15) phosphorylation and Cdk5 kinase activity increased. Cdk5(Y15) phosphorylation was inhibited by PP1, a Src family kinase inhibitor. To identify the PP1-sensitive kinase, we transfected cells with siRNA oligonucleotides for cSrc and related kinases. Only cSrc siRNA oligonucleotides inhibited Cdk5(Y15) phosphorylation. Cdk5(pY15) and its activator, p35, colocalized with actin in stress fibers. To examine Cdk5 function, we inhibited Cdk5 activity under conditions that also prevent phosphorylation at Y15: expression of kinase inactive mutations Cdk5(Y15F) and Cdk5(K33T), and siRNA suppression of Cdk5. Stress fiber formation was severely inhibited. To distinguish between a requirement for Cdk5 kinase activity and a possible adaptor role for Cdk5(pY15), we used two methods that inhibit kinase activity without inhibiting phosphorylation at Y15: pharmacological inhibition with olomoucine and expression of the kinase inactive mutation, Cdk5(D144N). Stress fiber organization was altered, but stress fiber formation was not blocked. These findings indicate that Cdk5(Y15) phosphorylation and Cdk5 activity have distinct functions required for stress fiber formation and organization, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号