首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, shares high sequence identity with aldose reductase (AR), and was recently identified as a therapeutic target in the treatment of several types of cancer. We have compared the inhibitory effects of plant components on recombinant AKR1B10 and AR. AKR1B10 was inhibited by curcuminoids, magnolol, honokiol and resveratrol, with IC50 values of 0.06-5 μM, which were lower than their values for AR. Among them, bisdemethoxycurcumin was the most potent competitive inhibitor (Ki = 22 nM) with the highest selectivity (85-fold versus AR), and acted as an effective inhibitor in cellular level. In contrast, demethoxycurcumin and curcumin showed >3-fold less potency and selectivity. Molecular docking studies of the curcuminoids in the AKR1B10-NADP+ complex and site-directed mutagenesis of the putative binding residues suggest that Gln114, Val301 and Gln303 are important for determining the inhibitory potency and selectivity of the curcuminoids.  相似文献   

2.
Meiotic maturation of amphibian oocytes induced by progesterone is known to be regulated by protein phosphorylation. To investigate a possible role for protein phosphatase-1 in this process, the effect of phosphatase inhibitor-2 was determined on the in vivo rate of dephosphorylation of phosphorylase a and on the rate of oocyte maturation. Dephosphorylation of microinjected phosphorylase a was inhibited up to 40% in the presence of inhibitor-2, with half-maximal inhibition at an intracellular concentration of 0.6 μM. Inhibitor-2 also caused over a 3-fold increase in the half-time for maturation, suggesting a possible role for protein phosphatase-1 in the regulation of meiosis.  相似文献   

3.
The steady-state interaction between protein phosphatase-1 and its two inhibitor proteins was studied in vitro at low enzyme concentrations where the assumptions of the Michaelis-Menten equation appeared to be valid. Under these conditions, and in the absence of divalent cations, inhibitor-1 behaved as a mixed inhibitor using phosphorylase alpha as a substrate, whereas inhibitor-2 was a competitive inhibitor. The results demonstrate that inhibitor-1 and inhibitor-2 do not interact with protein phosphatase-1 in an identical manner. Inhibitor-1 was only a substrate for protein phosphatase-1 in the presence of Mn2+, and its dephosphorylation was inhibited competitively by inhibitor-2 (Kis = 8 nM). Inhibitor-1 did not inhibit its own dephosphorylation in the presence of Mn2+. Its Km as a substrate (190 nM) was very much higher than its Ki as an inhibitor (1.5-7.5 nM). The results are consistent with a model in which a single binding site for inhibitor-1 is present on protein phosphatase-1, distinct from the binding site for phosphorylase alpha. It is envisaged that the binding of inhibitor-1 to this site not only inhibits the dephosphorylation of other substrates but permits access of its phosphothreonine to the same catalytic group(s) responsible for the dephosphorylation of other substrates. G-substrate, a protein phosphorylated exclusively on threonine residues, did not inhibit the dephosphorylation of phosphorylase alpha and its dephosphorylation was potently inhibited by inhibitor-1 or inhibitor-2. The role of the phosphothreonine residue in inhibitor-1 is discussed in the light of these results.  相似文献   

4.
The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is a convergent node for oncogenic cell-signaling cascades including the PD-L1/PD-1 pathway. Consequently, SHP2 has emerged as a compelling target for novel anti-cancer agents. Replacing one of phenyl ring in PTP1B inhibitor 1 with heterocyclic ring led to a series of heterocyclic bis-aryl amide derivatives. The representative compound 7b displayed SHP2 inhibitory activity with IC50 of 2.63 ± 0.08 μM, exhibited about 4-fold selectivity for SHP2 over TCPTP and had no detectable activity against SHP1 and PTP1B. These preliminary results could provide a possible opportunity for the development of novel SHP2 inhibitors with optimal potency and improved pharmacological properties.  相似文献   

5.
The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase linked to various kinds of cancers. Consequently, SHP2 has emerged as a promising target for novel anti-cancer agents. Using scaffold-hopping strategy, a series of benzo[c][1,2,5]thiadiazole derivatives was designed from PTP1B inhibitors with 1H-2,3-Dihydroperimidine motif, synthesized and evaluated their biological activities against PTP1B and SHP2. Among them, the representative compound 11g displayed SHP2 inhibitory activity with IC50 of 2.11?±?0.99?μM, exhibited 2.02-fold and 25-fold selectivity for SHP2 over SHP1 and PTP1B respectively and had no visible activity against TCPTP. These preliminary results could provide a possible opportunity for the development of novel SHP2 inhibitors with optimal potency and improved pharmacological properties.  相似文献   

6.
Huang HB  Chen YC  Lee TT  Huang YC  Liu HT  Liu CK  Tsay HJ  Lin TH 《Proteins》2007,68(3):779-788
Inhibitor-1alpha is one of the isoforms of human protein phosphatase inhibitor-1. It is a product of alternative splicing of inhibitor-1 gene and lacks 51 internal amino acids from residue 84 to 134 of inhibitor-1. Here we have characterized the structural and biochemical properties of inhibitor-1alpha. Structural analysis of recombinant inhibitor-1alpha by NMR spectroscopy revealed that inhibitor-1alpha adopts a predominantly random coil conformation. Excluding the region from residue 84 to 134 of inhibitor-1, the structural features of inhibitor-1 and inhibitor-1alpha are almost the same as each other. The IC(50) value of inhibitor-1alpha in inhibition of Protein phosphatase-1 (PP1) is comparable to that of inhibitor-1, indicating that inhibitor-1alpha is a potent inhibitor of PP1 when Thr-35 is phosphorylated by PKA. For phosphorylation by PKA and dephosphorylation by protein phosphatase-1, -2A, and -2B, the measured kinetic parameters of inhibitor-1alpha are very close to those of inhibitor-1. Taken together, these results suggest that inhibitor-1alpha preserves the structure of inhibitor-1, the PP1 inhibitory activity and the functional specificities toward phosphorylation by PKA and dephosphorylation by protein phosphatase-1, -2A, and -2B.  相似文献   

7.
Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1 PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1 PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1 PP2A in Wistar rats. The I1 PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1 PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients.  相似文献   

8.
H2DIDS, the dihydro analog of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) can interact covalently with membrane sites, resulting in an irreversible inhibition of anion exchange. At low temperatures (0°C) and for relatively short times, however, its interaction is largely reversible, so that a kinetic analysis of the nature of its inhibitory effect on Cl? self exchange can be performed. The effects of variations in the chloride concentration on the inhibitory potency of H2DIDS are consistent with the concept that Cl? and H2DIDS compete for the transport site of the anion exchange system. The value of Ki for H2DIDS is 0.046 μM, indicating that H2DIDS has a higher affinity for the transport system than any other inhibitor so far examined. If, as seems probable, the covalent labelling of H2DIDS occurs at the same site as the reversible binding, H2DIDS can be used as a covalent label for the transport site. The specific localization of H2DIDS in the band-3 protein thus indicates that this protein participates directly in anion exchange.  相似文献   

9.
This study mainly focused on the modification of the X2 position in febuxostat analogs. A series of 1-phenyl-1H-1,2,3-triazole-4-carboxylic acid derivatives (1a-s) with an N atom occupying the X2 position was designed and synthesized. Evaluation of their inhibitory potency in vitro on xanthine oxidase indicated that these compounds exhibited micromolar level potencies, with IC50 values ranging from 0.21 µM to 26.13 μM. Among them, compound 1s (IC50 = 0.21 μM) showed the most promising inhibitory effects and was 36-fold more potent than allopurinol, but was still 13-fold less potent than the lead compound Y-700, which meant that a polar atom fused at the X2 position could be unfavorable for potency. The Lineweaver-Burk plot revealed that compound 1s acted as a mixed-type xanthine oxidase inhibitor. Analysis of the structure-activity relationships demonstrated that a more lipophilic ether tail (e.g., meta-methoxybenzoxy) at the 4′-position could benefit the inhibitory potency. Molecular modeling provided a reasonable explanation for the structure–activity relationships observed in this study.  相似文献   

10.
11.
A variety of chlorinated and fluorinated epoxides and related compounds were synthesized and evaluated as inhibitors of epoxide hydrase. The compounds were tested using chicken liver microsomes and a radiometric assay based on [3H]styrene oxide, and using partially purified chicken liver microsomal epoxide hydrase and a continuous photometric assay based on p-nitrostyrene oxide, whose hydration could be monitored at 310 nm. For the 16 compounds studied both assays gave similar patterns of inhibitory activity. As expected from the relative Km values of the two substrates, all inhibitors were considerably more active against styrene oxide (Km =1.0 mM) than against p-nitrostyrene oxide (Km = 4.2 μM), and styrene oxide was a weak alternate-substrate inhibitor against p-nitrostyrene oxide. 1,1,1-Trichloropropene oxide, however, was a potent alternate-substrate inhibitor against p-nitrostyrene oxide. Addition of various substituents to the α-carbon of styrene oxide generated a series of compounds whose inhibitory potency toward p-nitrostyrene oxide increased in the order H ≈ CF3 < CH3 < CH2Cl < CHCl2 < CCl3 ≈ 1,1,1-trichloropropene oxide. In contrast, addition of a CH3 or CCl3 group to the β-carbon of styrene oxide resulted in only a modest increase in inhibitory potency. 2-Phenyl- and 3-phenyloxetane showed no pronounced inhibitory activity toward either styrene oxide or p-nitrostyrene oxide, but pentafluorophenyl ethylene oxide and 1,1, 1-trichlorobutane-3,4-oxide were moderately active inhibitors, although significantly less potent than 1,1,1-trichloroproene oxide. These results show that electronegativity, steric effects, and hydrophobic effects are each important in governing the interaction of epoxide hydrase substrates with the enzyme, although it is not yet possible to analyze separately the effects of each of these parameters on Km, V, and the catalytic mechanism.  相似文献   

12.
Inhibitors of a human member (AKR1C3) of the aldo-keto reductase superfamily are regarded as promising therapeutics for the treatment of prostatic and breast cancers. Baccharin [3-prenyl-4-(dihydrocinnamoyloxy)cinnamic acid], a component of propolis, was shown to be both potent (Ki 56 nM) and highly isoform-selective inhibitor of AKR1C3. In this study, a series of derivatives of baccharin were synthesized by replacing the 3-prenyl moiety with aryl and alkyl ether moieties, and their inhibitory activities for the enzyme were evaluated. Among them, two benzyl ether derivatives, 6m and 6n, showed an equivalent inhibitory potency to baccharin. The molecular docking of 6m in AKR1C3 has allowed the design and synthesis of (E)-3-{3-[(3-hydroxybenzyl)oxy]-4-[(3-phenylpropanoyl)oxy]phenyl}acrylic acid (14) with improved potency (Ki 6.4 nM) and selectivity comparable to baccharin. Additionally, 14 significantly decreased the cellular metabolism of androsterone and cytotoxic 4-oxo-2-nonenal by AKR1C3 at much lower concentrations than baccharin.  相似文献   

13.
San San Lin  Ahmad Saleh  Uwe Groß 《BBA》2008,1777(11):1455-1462
The apicomplexan parasite Toxoplasma gondii does not possess complex I of the mitochondrial respiratory chain, but has two genes encoding rotenone-insensitive, non-proton pumping type-II NADH dehydrogenases (NDH2s). The absence of such “alternative” NADH dehydrogenases in the human host defines these enzymes as potential drug targets. TgNDH2-I and TgNDH2-II are constitutively expressed in tachyzoites and bradyzoites and are localized to the mitochondrion as shown by epitope tagging. Functional expression of TgNDH2-I in the yeast Yarrowia lipolytica as an internal enzyme, with the active site facing the mitochondrial matrix, permitted growth in the presence of the complex I inhibitor DQA. Bisubstrate kinetics of TgNDH2-I measured within Y. lipolytica mitochondrial membrane preparations were in accordance with a ping-pong mechanism. Using inhibition kinetics we demonstrate here that 1-hydroxy-2-alkyl-4(1)quinolones with long alkyl chains of C12 (HDQ) and C14 are high affinity inhibitors for TgNDH2-I, while compounds with shorter side chains (C5 and C6) displayed significantly higher IC50 values. The efficiency of the various quinolone derivatives to inhibit TgNDH2-I enzyme activity mirrors their inhibitory potency in vivo, suggesting that a long acyl site chain is critical for the inhibitory potential of these compounds.  相似文献   

14.
Targeting of protein tyrosine phosphatase-1B (PTP1B) has emerged as a promising strategy for therapeutic intervention of diabetes and obesity. Investigation of new inhibitors with good bioavailability and high selectivity is the major challenge of drug discovery program targeting PTP1B. Therefore, herein, new neutral benzene-sulfonamide containing compounds were designed, synthesized and biologically evaluated as potent PTP1B inhibitors. New series of thiazolidine, oxazolidine, thiazinan, oxazinan, oxazole, thiazole, tetrazole, cyanopyridine, chromenone, and iminochromene of benzene-sulfonamide derivatives (MSE-1 to MSE-15) were synthesized in a good yield under mild condition using sulfadiazine as a starting material. Among the synthesized compounds, MSE-13 and MSE-14 showed the most in vitro potent PTP-1B inhibitory activity (IC50 of 0.88 µM and 3.33 µM, respectively). Animal treatment by the target compounds significantly improved the insulin resistance, diminished plasma glucose level, decreased initial body weight, and normalized the serum lipid profile compared to pioglitazone, a standard PTP1B inhibitor. The molecular modeling study showed a high affinity and selectivity of our synthesized compounds to the active site and B-site of PTP1B holding hydrogen bonding, hydrophobic, and electrostatic interactions. Furthermore, Electrostatic Surface Potential (ESP) and HOMO/LUMO analysis indicated the importance of sulfamoyl moiety for PTP1B binding. In silico ADME predictions of such compounds also showed the promising pharmacokinetic and physicochemical properties. The proposed compounds could be considered a lead inhibitory scaffold to PTP1B.  相似文献   

15.
The inhibitory effect of a phenyl group in quaternary ammonium compounds on thiamine uptake in isolated rat hepatocytes was investigated. The phenyltrimethylammonium ion was a more potent inhibitor than the tetramethylammonium ion, while the dibenzyldimethylammonium ion was the most potent inhibitor of thiamine uptake among those compounds examined. A kinetic study showed that this compound was a competitive inhibitor. The cetyltrimethylammonium ion was a less effective inhibitor than the benzyltrimethylammonium ion, and the palmitoylcholine ion was a weak inhibitor. These results indicate that the lipophilicity of a quaternary ammonium compound is not always correlated with its affinity for thiamine-carrier binding, but the presence of a phenyl group plays a significant role in affinity. The inhibitory effect of the series of (CH3)3N+(CH2)nC6H5 (n = 0−6) compounds on thiamine uptake in isolated rat hepatocytes was studied. The maximal inhibitory activity occurred at n = 5. These results suggest that the phenyl group in a quaternary ammonium compound has a specific interaction with the thiamine-binding site in rat liver plasma membrane.  相似文献   

16.
Specific binding sites for vasoactive intestinal peptide were characterized in plasma membranes from rat intestinal epithelial cells. At 30°C, the interaction of 125I-labelled peptide with intestinal membranes was rapid, reversible, specific and saturable. At equilibrium, the binding of 125I-labelled peptide was competitively inhibited by native peptide in the 3 · 10?11?3 · 10?7 M range concentration. Scatchard analysis of binding data suggested the presence of two distinct classes of vasoactive intestinal peptide binding sites: a class with a high affinity Kd = 0.28 nM) and a low capacity (0.8 pmol peptide/mg membrane protein) and a class with a low affinity (Kd = 152 nM) and a high capacity (161 pmol peptide/mg membrane protein). Secretin competitively inhibited binding of 125I-labelled peptide but its potency was 1/1000 that of native peptide. Glucagon and the gastric inhibitory peptide were ineffective. The guanine nucleotides, GTP and Gpp(NH)p inhibited markedly the interaction of 125I-labelled peptide with its binding sites, by increasing the rate of dissociation of peptide bound to membranes. The other nucleotides triphosphate tested (ATP, ITP, UTP, CTP) were also effective in inhibiting binding of 125I-labelled peptide to membranes but their potencies were 1/100-1/1000 that of guanine nucleotides.The specificity and affinity of the vasoactive intestinal peptide-binding sites in plasma membranes prepared from rat intestinal epithelial cells, which is in agreement with an adenylate cyclase highly sensitive to the peptide recently characterized in these membranes (Amiranoff, B., Laburthe, M., Dupont, C. and Rosselin, G. (1978) Biochim. Biophys. Acta 544, 474–481) further argue for a physiological role of the peptide in the regulation of intestinal epithelial function.  相似文献   

17.
Neuraminidase has been considered as an important target for designing agents against influenza viruses. In a discovery of anti-influenza agents with epigoitrin as the initial lead compound, a series of 1-amino-2-alkanols were synthesized and biologically evaluated. The in vitro evaluation indicated that (E)-1-amino-4-phenylbut-3-en-2-ol (C1) had better inhibitory activities than 2-amino-1-arylethan-1-ol derivatives. To our surprise, sulfonation of C1 with 4-methoxybenzenesulfonyl chloride afforded more active inhibitor II with up to 6.4?μM IC50 value against neuraminidase. Furthermore, docking of inhibitor II into the active site of NA found that the H atoms in both NH2 and OH groups of inhibitor II were the key factors for potency. Molecular docking research did not explained very well the observed structure-activity relationship (SAR) from amino acid residue level, but also aided the discovery of (E)-1-amino-4-phenylbut-3-en-2-ol derivatives as novel and potent NA inhibitors.  相似文献   

18.
Chlamydia trachomatis high temperature requirement A (CtHtrA) is a serine protease that performs proteolytic and chaperone functions in pathogenic Chlamydiae; and is seen as a prospective drug target. This study details the strategies employed in optimizing the irreversible CtHtrA inhibitor JO146 [Boc-Val-Pro-ValP(OPh)2] for potency and selectivity. A series of adaptations both at the warhead and specificity residues P1 and P3 yielded 23 analogues, which were tested in human neutrophil elastase (HNE) and CtHtrA enzyme assays as well as Chlamydia cell culture assays. Trypsin and chymotrypsin inhibition assays were also conducted to measure off-target selectivity. Replacing the phosphonate moiety with α-ketobenzothiazole produced a reversible analogue with considerable CtHtrA inhibition and cell culture activity. Tertiary leucine at P3 (8a) yielded approximately 33-fold increase in CtHtrA inhibitory activity, with an IC50 = 0.68 ± 0.02 µM against HNE, while valine at P1 retained the best anti-chlamydial activity. This study provides a pathway for obtaining clinically relevant inhibitors.  相似文献   

19.
The protein phosphatases of Drosophila melanogaster and their inhibitors   总被引:2,自引:0,他引:2  
Protein phosphatases-1, 2A and 2B have been identified in membrane and soluble fractions of Drosophila melanogaster heads. Similarities between Drosophila and mammalian protein phosphatase-1 included specificity for the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition by protamine, retention by heparin-Sepharose and selective interaction with membranes. In addition, an inactive form of protein phosphatase-1, termed protein phosphatase-1I, was detected in the soluble fraction that could be activated by preincubation with MgATP and mammalian glycogen synthase kinase-3. Inhibitor-2 partially purified from Drosophila had an identical molecular mass to its mammalian counterpart, and recombined with mammalian protein phosphatase-1 to form a hybrid protein phosphatase-1I. Similarities between Drosophila and mammalian protein phosphatase-2A included preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and -2, activation by protamine, exclusion from heparin-Sepharose and apparent molecular mass. A Ca2+-dependent calmodulin-stimulated protein phosphatase (protein phosphatase-2B) that was inhibited by trifluoperazine was identified in the soluble fraction. The remarkable similarities between Drosophila protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation and demonstrate that the procedures used to classify mammalian protein phosphatases have a wider application. Characterisation of the Drosophila phosphatases will facilitate genetic analysis of dephosphorylation systems and their possible roles in neuronal and behavioural plasticity in Drosophila.  相似文献   

20.
Here we describe the isolation of a novel C-terminally amidated octadecapeptide—SVIGCWTKSIPPRPCFVK-amide—that contains a disulphide loop between Cys5 and Cys15 that is consistent with a Bowman-Birk type protease inhibitor, from the skin secretion of the Chinese Bamboo odorous frog, Huia versabilis. Named HV-BBI, the peptide is encoded by a single precursor of 62 amino acid residues whose primary structure was deduced from cloned skin cDNA. The precursor exhibits the typical organization of that encoding an amphibian skin peptide with a highly-conserved signal peptide, an intervening acidic amino acid residue-rich domain and a single HV-BBI-encoding domain located towards the C-terminus. A synthetic replicate of HV-BBI, with the wild-type K (Lys-8) residue in the presumed P1 position, was found to be a potent inhibitor of trypsin with a Ki just slightly less than 19 nM. Substitution at this site with R (Arg) resulted in a significant reduction in potency (Ki 57 nM), whereas replacement of K with F (Phe) resulted in the complete abolition of trypsin inhibitory activity. Thus, HV-BBI is a potent inhibitor of trypsin and the lysyl (K) residue that occupies the P1 position appears to be optimal for potency of action against this protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号