首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonasreinekei MT1 is capable of growing on 4- and 5-chlorosalicylate as the sole carbon source involving a pathway with trans-dienelactone hydrolase as the key enzyme. This enzyme transforms 4-chloromuconolactone to maleylacetate and thereby avoids the spontaneous formation of toxic protoanemonin. trans-Dienelactone hydrolase is a Zn2+-dependent hydrolase where activity can be modulated by the exchange of Zn2+ by Mn2+ in at least two of the three metal-binding sites. Site directed variants of conserved residues of the Q101XXXQ105XD107XXXH111 motif and of H281 and E294 exhibit a two order of magnitude decrease in activity and a strong decrease in metal-binding capability. As none of the variants exhibited a change in secondary structure, the analyzed amino acid residues can be assumed to be involved in metal binding, forming a novel trinuclear metal-binding motif.  相似文献   

2.
We characterized the activities of the Myxococcus xanthus ApaH-like phosphatases PrpA and ApaH, which share homologies with both phosphoprotein phosphatases and diadenosine tetraphosphate (Ap4A) hydrolases. PrpA exhibited a phosphatase activity towards p-nitrophenyl phosphate (pNPP), tyrosine phosphopeptide and tyrosine-phosphorylated protein, and a weak hydrolase activity towards ApnA and ATP. In the presence of Mn2+, PrpA hydrolyzed Ap4A into AMP and ATP, whereas in the presence of Co2+ PrpA hydrolyzed Ap4A into two molecules of ADP. ApaH exhibited high phosphatase activity towards pNPP, and hydrolase activity towards ApnA and ATP. Mn2+ was required for ApaH-mediated pNPP dephosphorylation and ATP hydrolysis, whereas Co2+ was required for ApnA hydrolysis. Thus, PrpA and ApaH may function mainly as a tyrosine protein phosphatase and an ApnA hydrolase, respectively.  相似文献   

3.
This paper describes the purification and properties of an enzyme present in Artemia larvae which hydrolyzes aminoacyl-tRNA by splitting the ester bond between the amino acid and the tRNA chain. The hydrolase has a molecular weight of 55 000 as estimated by gel filtration in Sephadex G-150, is maximally active in the presence of a divalent cation (Mg2+, Mn2+) and has a pH maximum at around neutrality. The enzyme has a wide substrate specificity, hydrolyzing with practically the same efficiency aminoacyl-tRNAs with the amino group free or substituted. This property distinguishes this enzyme from the widely distributed peptidyl-tRNA hydrolase and other more specific aminoacyl-tRNA hydrolases. The expression of the hydrolase during Artemia larval development is blocked by inhibitors of protein synthesis.  相似文献   

4.
Leukotriene A4 hydrolase/aminopeptidase (LTA4H) (EC 3.3.2.6) is a bifunctional zinc metalloenzyme with both an epoxide hydrolase and an aminopeptidase activity. LTA4H from the African claw toad, Xenopus laevis (xlLTA4H) has been shown to, unlike the human enzyme, convert LTA4 to two enzymatic metabolites, LTB4 and another biologically active product Δ6-trans8-cis-LTB4 (5(S),12R-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid). In order to study the molecular aspect of the formation of this product we have characterized the structure and function of xlLTA4H. We solved the structure of xlLTA4H to a resolution of 2.3 Å. It is a dimeric structure where each monomer has three domains with the active site in between the domains, similar as to the human structure. An important difference between the human and amphibian enzyme is the phenylalanine to tyrosine exchange at position 375. Our studies show that mutating F375 in xlLTA4H to tyrosine abolishes the formation of the LTB4 isomeric product Δ6-trans8-cis-LTB4. In an attempt to understand how one amino acid exchange leads to a new product profile as seen in the xlLTA4H, we performed a conformer analysis of the triene part of the substrate LTA4. Our results show that the Boltzmann distribution of substrate conformers correlates with the observed distribution of products. We suggest that the observed difference in product profile between the human and the xlLTA4H arises from different level of discrimination between substrate LTA4 conformers.  相似文献   

5.
A 40 kDa chitinase from Streptomyces roseolus DH was purified to homogeneity from culture medium. The N-terminal sequence was TPPPAKAVKLGYFTNWGVYG, which was highly homologous to the glycoside hydrolase (GH) 18 conserved domain of Streptomyces chitinases and included the two crucial Trp and Tyr sites. The purified enzyme showed maximal activity at 60 °C, pH 6.0 and exhibited good thermal and pH stabilities. The enzyme displayed strict substrate specificity on colloidal or glycol chitin, but not on chitosan derivatives. It was activated by Mg2+, Ba2+ and Ca2+, and inhibited by Cu2+, Co2+, Mn2+, whereas Zn2+ and ethylenediamine tetraacetic acid showed little inhibitory effects. Morphological changes observed by scanning electron microscopy revealed the occurrence of regular pores on the surface with the progress of enzymatic chitinolysis. Additionally, this GH-18 chitinase had a marked inhibitory effect on fungal hyphal extensions. In conclusion, this chitinase may have great potential for the enzymatic degradation of chitin.  相似文献   

6.
This paper describes the partial purification and characterization of an enzyme present in the fungus Fusarium culmorum which hydrolyzes aminoacyl-tRNA by splitting the ester linkage between the amino acid and the tRNA molecule. The enzyme has a molecular weight of 46 000 as estimated by gel filtration in Sephadex G-100, is maximally active in the presence of a divalent cation (Mg2+ or Mn2+) and has a pH maximum around neutrality. The enzyme is quite unspecific, hydrolyzing with practically the same efficiency aminoacyl-tRNAs with the amino group either free or substituted. The Km of the enzyme for phenylalanyl-tRNAPhe, and N-acetylphenylalanyl-tRNA is around 1 μM. Binding to the 80 S ribosomes but not to the 40 S ribosomal subunit renders the substrate resistant to the action of the hydrolase. The characteristics of this hydrolase are similar to those found for the aminoacyl-tRNA hydrolase of Artemia, and different from the more widely distributed peptidyl-tRNA hydrolases and other more specific aminoacyl-tRNA hydrolases found in different organisms.  相似文献   

7.
Strain D4 was isolated from the sludge of the wastewater treating system of a 4-Chloronitrobenzene (4-CNB) manufacturer. It was able to utilize 4-CNB as the sole carbon and nitrogen source for growth. Strain D4 was preliminarily identified as Cupriavidus sp. based on its physiological & biochemical characteristics and 16S rRNA gene sequence analysis. It could completely degrade 300 mg L−1 of 4-CNB within 25 h under the condition of 30 °C and pH 7.0. Strain D4 could also degrade 4-CNB in presence of heavy metals including Co2+, Cd2+, Pb2+, Zn2+, Mn2+and so on, therefore it was an excellent candidate for the bio-treatment of 4-CNB and heavy metals co-contaminated environments. The main 4-CNB degrading related genes (cnb A, B, Cab, D, G, Z) and arsenate resistance gene fragment of strain D4 were cloned, sequenced and analyzed, which showed high similarity with the corresponding genes of a reported 4-CNB-degrader, strain CNB-1. The cnb genes of strain D4 were located on two plasmids. This is the first report on the degradation of 4-CNB by the strain from the genus of Cupriavidus sp.  相似文献   

8.
ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn2+ and Mn2+ from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn2+ or Mn2+ specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn2+ over Mn2+ specificity, the Zn2+ ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn2+-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn2+-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn2+-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn2+ specificity.  相似文献   

9.
The zinc-dependent leucine aminopeptidase from Pseudomonas putida (ppLAP) is an important enzyme for the industrial production of enantiomerically pure amino acids. To provide a better understanding of its structure-function relationships, the enzyme was studied by X-ray crystallography. Crystal structures of native ppLAP at pH 9.5 and pH 5.2, and in complex with the inhibitor bestatin, show that the overall folding and hexameric organization of ppLAP are very similar to those of the closely related di-zinc leucine aminopeptidases (LAPs) from bovine lens and Escherichia coli. At pH 9.5, the active site contains two metal ions, one identified as Mn2+ or Zn2+ (site 1), and the other as Zn2+ (site 2). By using a metal-dependent activity assay it was shown that site 1 in heterologously expressed ppLAP is occupied mainly by Mn2+. Moreover, it was shown that Mn2+ has a significant activation effect when bound to site 1 of ppLAP. At pH 5.2, the active site of ppLAP is highly disordered and the two metal ions are absent, most probably due to full protonation of one of the metal-interacting residues, Lys267, explaining why ppLAP is inactive at low pH. A structural comparison of the ppLAP-bestatin complex with inhibitor-bound complexes of bovine lens LAP, along with substrate modelling, gave clear and new insights into its substrate specificity and high level of enantioselectivity.  相似文献   

10.
An inducible enzyme catalysing the hydrolysis of (+)-usnic acid to (+)-2-desacetylusnic acid and acetic acid has been purified 150-fold from the mycelium of Mortierella isabellina grown in the presence of (+)-usnic acid. Purification was achieved by treatment with protamine sulfate, (NH4)2SO4 fractionation, negative adsorption on alumina Cγ gel and hydroxylapatite followed by chromatography on DEAE-cellulose and Sephadex G-200. The elution pattern from a Sephadex G-200 column indicated a MW of ca 7.6 × 104 for the enzyme. The apparent Km value for (+)-usnic acid at the pH optimum (pH 7) was 4.0 × 10?5 M. The enzyme was specific for (+)-usnic acid and inactive towards (?)-usnic acid, (+)-isousnic acid or certain phloracetophenone derivatives. Its activity was enhanced in the presence of divalent metal ions such as Co2+, Ni2+, Mn2+, Mg2+ and Zn2+.  相似文献   

11.
Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes.  相似文献   

12.
Pistia stratiotes is used for the epuration of domestic sewage in the Biyem Assi phytopurification station. During the process, Fe2+, Mn2+, Zn2+ and Pb2+ are absorbed in substantial amounts by the plant. These metals modify the H+/K+ exchange system at the root level. H+ efflux is inhibited by Fe2+ and by Zn2+ and enhanced by Mn2+ and Pb2+. K+ influx is inhibited by Fe2+, by Zn2+ and by Pb2+ and enhanced by Mn2+. It is shown that the purification capacity ofPistia stratiotes can vary with the composition of the heavy metals in the surrounding medium.  相似文献   

13.
Xylonolactonase Cc XylC from Caulobacter crescentus catalyzes the hydrolysis of the intramolecular ester bond of d‐xylonolactone. We have determined crystal structures of Cc XylC in complex with d‐xylonolactone isomer analogues d‐xylopyranose and (r)‐(+)‐4‐hydroxy‐2‐pyrrolidinone at high resolution. Cc XylC has a 6‐bladed β‐propeller architecture, which contains a central open channel having the active site at one end. According to our previous native mass spectrometry studies, Cc XylC is able to specifically bind Fe2+. The crystal structures, presented here, revealed an active site bound metal ion with an octahedral binding geometry. The side chains of three amino acid residues, Glu18, Asn146, and Asp196, which participate in binding of metal ion are located in the same plane. The solved complex structures allowed suggesting a reaction mechanism for intramolecular ester bond hydrolysis in which the major contribution for catalysis arises from the carbonyl oxygen coordination of the xylonolactone substrate to the Fe2+. The structure of Cc XylC was compared with eight other ester hydrolases of the β‐propeller hydrolase family. The previously published crystal structures of other β‐propeller hydrolases contain either Ca2+, Mg2+, or Zn2+ and show clear similarities in ligand and metal ion binding geometries to that of Cc XylC. It would be interesting to reinvestigate the metal binding specificity of these enzymes and clarify whether they are also able to use Fe2+ as a catalytic metal. This could further expand our understanding of utilization of Fe2+ not only in oxidative enzymes but also in hydrolases.  相似文献   

14.
Leukotriene A4 epoxide hydrolase from dog lung, a soluble enzyme catalyzing the hydrolysis of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) was partially purified by anion exchange HPLC. The enzymatic reaction obeys Michaelis- Menten kinetics. The apparent Km ranged between 15 and 25 μM and the enzyme exhibited an optimum activity at pH 7.8. An improved assay for the epoxide hydrolase has been developed using bovine serum albumin and EDTA to increase the conversion of LTA4 to LTB4. This method was used to produce 700 mg of LTB4 from LTA4 methyl ester. The partial by purified enzyme was found to be uncompetitively inhibited by divalent cations. Ca2+, Mn+, Fe2+, Zn+2 and Cu+2 were found to have inhibitor constants (Ki) of 89 mM, 3.4 mM, 1.1 mM, 0.57 mM, and 28 μM respectively Eicosapentaenoic acid was shown to be a competitive inhibitor of this enzyme with a Ki of 200 μM. From these inhibition studies, it can be theorized that the epoxide hydrolae has at least one hydrophobic and one hydrophilic binding site.  相似文献   

15.
A highly active amide hydrolase (DamH) was purified from Delftia sp. T3-6 using ammonium sulfate precipitation, diethylaminoethyl anion exchange, hydrophobic interaction chromatography, and Sephadex G-200 gel filtration. The molecular mass of the purified enzyme was estimated to be 32 kDa by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis. The sequence of the N-terminal 15 amino acid residues was determined to be Gly-Thr-Ser-Pro-Gln-Ser-Asp-Phe-Leu-Arg-Ala-Leu-Phe-Gln-Ser. Based on the N-terminal sequence and results of peptide mass fingerprints, the gene (damH) was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). DamH was a bifunctional hydrolase showing activity to amide and ester bonds. The specific activities of recombinant DamH were 5,036 U/mg for 2′-methyl-6′-ethyl-2- chloroacetanilide (CMEPA) (amide hydrolase function) and 612 U/mg for 4-nitrophenyl acetate (esterase function). The optimum substrate of DamH was CMEPA, with K m and k cat values of 0.197 mM and 2,804.32 s?1, respectively. DamH could also hydrolyze esters such as 4-nitrophenyl acetate, glycerol tributyrate, and caprolactone. The optimal pH and temperature for recombinant DamH were 6.5 and 35 °C, respectively; the enzyme was activated by Mn2+ and inhibited by Cu2+, Zn2+, Ni2+, and Fe2+. DamH was inhibited strongly by phenylmethylsulfonyl and SDS and weakly by ethylenediaminetetraacetic acid and dimethyl sulfoxide.  相似文献   

16.
With the progressive focus on renewable energy via biofuels production from lignocellulosic biomass, cellulases are the key enzymes that play a fundamental role in this regard. This study aims to unravel the characteristics of Thermotoga maritima MSB8 (Tma) (a hyperthermophile from hot springs) thermostable glycoside hydrolase enzyme. Here, a glycoside hydrolase gene of Thermotoga maritima (Tma) was heterologously expressed and characterized. The gene was placed in the pQE-30 expression vector under the T5 promotor, and the construct pQE-30-Gh was then successfully integrated into Escherichia coli BL21 (DH5α) genome by transformation. Sequence of the glycoside hydrolase contained an open reading frame of 2.124 kbp, encoded a polypeptide of 721 amino acid residues. The molecular weight of the recombinant protein estimated was 79 kDa. The glycoside hydrolase was purified by Ni+2-NTA affinity chromatography and its enzymatic activity was investigated. The recombinant enzyme is highly stable within an extreme pH range (2.0–7.0) and highly thermostable at 80 °C for 72 h indicating its viability in hyperthermic environment and acidic nature. Moreover, the Ca2+ and Mn2+ introduction stimulated the residual activity of recombinant enzyme. Conclusively, the thermostable glycoside hydrolase possesses potential to be exploited for industrial applications at hyperthermic environment.  相似文献   

17.
Epoxide hydrolase (EC 3.3.2.3) purified from rat liver microsomes has been immobilized by covalent linking to dextran activated by imidazolyl carbamate groups, under mild conditions. Kappm values of free and dextran bound epoxide hydrolase toward benzo(a)pyrene-4,5-oxide were 0.5 and 0.35 μM respectively, while Vappmax was lowered from 300 to 120 nmol min?1mg?1protein. The activity lost upon coupling could not be restored by digestion of the support by dextranase (1,6-α-d-glucan 6-glucanohydrolase, EC 3.2.1.11) treatment. This fact, along with the similarity of the activation energy values for both native and bound epoxide hydrolase, indicated that steric hindrance effects due to the polymer support played only a minor role in this loss of activity. Evidences of changes in the conformation of epoxide hydrolase were obtained by a comparative study of u.v. circular dichroism and tryptophan fluorescence emission spectra of the native and dextran bound enzymes. On the other hand, the enzyme conjugate showed greater resistance than the free enzyme to thermal inactivation.  相似文献   

18.
Absorption of copper, zinc, and manganese by sugarcane leaf tissue   总被引:2,自引:2,他引:0       下载免费PDF全文
Bowen JE 《Plant physiology》1969,44(2):255-261
The absorption of Cu2+, Zn2+, and Mn2+ by leaf tissue of 4-month old sugarcane plants (Saccharum officinarum L., var. H53-263) has been investigated. After the “apparent free space” fraction was desorbed, the absorption of Cu2+, Mn2+, and Zn2+ yielded a curve typical of many ion uptake processes when measured as a function of the external concentration. However, only 1 absorption mechanism was evident for each cation. The pH optimum for Cu2+ and Zn2+ uptake was 5.0 to 6.0, whereas that for Mn2+ absorption was 4.5 to 6.0. Absorption was competitively inhibited by H+, and this inhibition was reversible when 0.5 mm Ca2+ was present. Cu2+ and Zn2+ were absorbed through the same carrier sites, as concluded from their mutually competitive activities. Mn2+ was absorbed through a second, independent mechanism. Uptake of each cation was strongly inhibited by uncouplers of oxidative phosphorylation, by Amytal and Nembutal2, by 5 × 10−2m succinate, and by ADP and Pi. Absorption of Cu2+, Zn2+, and Mn2+ was concluded to be coupled to oxidative phosphorylation, and specifically to energy-conservation Site I.  相似文献   

19.
20.
Mangafodipir is a magnetic resonance imaging contrast agent with manganese superoxide dismutase (MnSOD) mimetic activity. The MnSOD mimetic activity protects healthy cells against oxidative stress-induced detrimental effects, e.g., myelosuppressive effects of chemotherapy drugs. The contrast property depends on in vivo dissociation of Mn2+ from mangafodipir—about 80% dissociates after injection. The SOD mimetic activity, however, depends on the intact Mn complex. Complexed Mn2+ is readily excreted in the urine, whereas dissociated Mn2+ is excreted slowly via the biliary route. Mn is an essential but also a potentially neurotoxic metal. For more frequent therapeutic use, neurotoxicity due to Mn accumulation in the brain may represent a serious problem. Replacement of 4/[5] of Mn2+ in mangafodipir with Ca2+ (resulting in calmangafodipir) stabilizes it from releasing Mn2+ after administration, which roughly doubles renal excretion of Mn. A considerable part of Mn2+ release from mangafodipir is governed by the presence of a limited amount of plasma zinc (Zn2+). Zn2+ has roughly 103 and 109 times higher affinity than Mn2+ and Ca2+, respectively, for fodipir. Replacement of 80% of Mn2+ with Ca2+ is enough for binding a considerable amount of the readily available plasma Zn2+, resulting in considerably less Mn2+ release and retention in the brain and other organs. At equivalent Mn2+ doses, calmangafodipir was significantly more efficacious than mangafodipir to protect BALB/c mice against myelosuppressive effects of the chemotherapy drug oxaliplatin. Calmangafodipir did not interfere negatively with the antitumor activity of oxaliplatin in CT2[6] tumor-bearing syngenic BALB/c mice, contrary calmangafodipir increased the antitumor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号