首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.  相似文献   

2.
The relationship between amyloid deposition and cellular toxicity is still controversial. In addition to fibril-forming oligomers, other soluble Aβ forms (amyloid β-derived diffusible ligands (ADDLs)) were also suggested to form and to present different morphologies and mechanisms of toxicity. One ADDL type, the “globulomer,” apparently forms independently of the fibril aggregation pathway. Even though many studies argue that such soluble Aβ oligomers are off fibril formation pathways, they may nonetheless share some structural similarity with protofibrils. NMR data of globulomer intermediates, “preglobulomers,” suggested parallel in-register C-terminal β-sheets, with different N-terminal conformations. Based on experimental data, we computationally investigate four classes of Aβ dodecamers: fibril, fibril oligomer, prefibril/preglobulomer cluster, and globulomer models. Our simulations of the solvent protection of double-layered fibril and globulomer models reproduce experimental observations. Using a single layer Aβ fibril oligomer β-sheet model, we found that the C-terminal β-sheet in the fibril oligomer is mostly curved, preventing it from quickly forming a fibril and leading to its breaking into shorter pieces. The simulations also indicate that β-sheets packed orthogonally could be the most stable species for Aβ dodecamers. The major difference between fibril-forming oligomers and ADDL-like oligomers (globulomers) could be the exposure of Met-35 patches. Although the Met-35 patches are necessarily exposed in fibril-forming oligomers to allow their maturation into fibrils, the Met-35 patches in the globulomer are covered by other residues in the orthogonally packed Aβ peptides. Our results call attention to the possible existence of certain “critical intermediates” that can lead to both seeds and other soluble ADDL-like oligomers.  相似文献   

3.
The polyphenol (−)-epigallocatechin-3-gallate (EGCG) has recently attracted much research interest in the field of protein-misfolding diseases because of its potent anti-amyloid activity against amyloid-β, α-synuclein and huntingtin, the amyloid-fibril-forming proteins involved in Alzheimer's, Parkinson's and Huntington's diseases, respectively. EGCG redirects the aggregation of these polypeptides to a disordered off-folding pathway that results in the formation of non-toxic amorphous aggregates. Whether this anti-fibril activity is specific to these disease-related target proteins or is more generic remains to be established. In addition, the mechanism by which EGCG exerts its effects, as with all anti-amyloidogenic polyphenols, remains unclear. To address these aspects, we have investigated the ability of EGCG to inhibit amyloidogenesis of the generic model fibril-forming protein RCMκ-CN (reduced and carboxymethylated κ-casein) and thereby protect pheochromocytoma-12 cells from RCMκ-CN amyloid-induced toxicity. We found that EGCG potently inhibits in vitro fibril formation by RCMκ-CN [the IC50 for 50 μM RCMκ-CN is 13 ± 1 μM]. Biophysical studies reveal that EGCG prevents RCMκ-CN fibril formation by stabilising RCMκ-CN in its native-like state rather than by redirecting its aggregation to the disordered, amorphous aggregation pathway. Thus, while it appears that EGCG is a generic inhibitor of amyloid-fibril formation, the mechanism by which it achieves this inhibition is specific to the target fibril-forming polypeptide. It is proposed that EGCG is directed to the amyloidogenic sheet-turn-sheet motif of monomeric RCMκ-CN with high affinity by strong non-specific hydrophobic associations. Additional non-covalent π-π stacking interactions between the polyphenolic and aromatic residues common to the amyloidogenic sequence are also implicated.  相似文献   

4.
Liquid–liquid phase separation (LLPS) is a biological phenomenon wherein a metastable and concentrated droplet phase of biomolecules spontaneously forms. A link may exist between LLPS of proteins and the disease-related process of amyloid fibril formation; however, this connection is not fully understood. Here, we investigated the relationship between LLPS and aggregation of the C-terminal domain of TAR DNA-binding protein 43, an amyotrophic lateral sclerosis–related protein known to both phase separate and form amyloids, by monitoring conformational changes during droplet aging using Raman spectroscopy. We found that the earliest aggregation events occurred within droplets as indicated by the development of β-sheet structure and increased thioflavin-T emission. Interestingly, filamentous aggregates appeared outside the solidified droplets at a later time, suggestive that amyloid formation is a heterogeneous process under LLPS solution conditions. Furthermore, the secondary structure content of aggregated structures inside droplets is distinct from that in de novo fibrils, implying that fibril polymorphism develops as a result of different environments (LLPS versus bulk solution), which may have pathological significance.  相似文献   

5.
There is strong experimental evidence of the influence of surfactants (e.g., fatty acids) on the kinetics of amyloid fibril formation. However, the structures of mixed assemblies and interactions between surfactants and fibril-forming peptides are still not clear. Here, coarse-grained simulations are employed to study the aggregation kinetics of amyloidogenic peptides in the presence of amphiphilic lipids. The simulations show that the lower the fibril formation propensity of the peptides, the higher the influence of the surfactants on the peptide self-assembly kinetics. In particular, the lag phase of weakly aggregating peptides increases because of the formation of mixed oligomers, which are promoted by hydrophobic interactions and favorable entropy of mixing. A transient peak in the number of surfactants attached to the growing fibril is observed before reaching the mature fibril in some of the simulations. This peak originates from transient fibrillar defects consisting of exposed hydrophobic patches on the fibril surface, which provide a possible explanation for the temporary maximum of fluorescence observed sometimes in kinetic traces of the binding of small-molecule dyes to amyloid fibrils.  相似文献   

6.
Misfolding and aggregation of the human prion protein (PrP) cause neurodegenerative transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease. Mature native PrP is composed of 209 residues and is folded into a C-terminal globular domain (residues 125–209) comprising a small two-stranded β-sheet and three α-helices. The N-terminal domain (residues 23–124) is intrinsically disordered. Expression of truncated PrP (residues 90–231) is sufficient to cause prion disease and residues 90/100–231 is comprising the amyloid-like fibril core of misfolded infectious PrP. During PrP fibril formation under native conditions in vitro, the disordered N-terminal domain slows down fibril formation likely due to a mechanism of initial aggregation forming morphologically disordered aggregates. The morphological disordered aggregate is a transient phase. Nucleation of fibrils occurs from this initial aggregate. The aggregate phase is largely circumvented by seeding with preformed PrP fibrils. In vivo PrP is N-glycosylated at positions Asn181 and Asn197. Little is known about the importance of these positions and their glycans for PrP stability, aggregation and fibril formation. We have in this study taken a step towards that goal by mutating residues 181 and 197 for cysteines to study the positional impact on these processes. We have further by organic synthetic chemistry and chemical modification generated synthetic glycosylations in these positions. Our data shows that residue 181 when mutated to a cysteine is a key residue for self-chaperoning, rendering a trap in the initial aggregate preventing conformational changes towards amyloid fibril formation. Position 197 is less involved in the aggregate trapping and is more geared towards β-sheet structure conversion within amyloid fibrils. As expected, synthetic glycosylated 197 is less affected towards fibril formation compared to glycosylated 181. Our data are rather compatible with the parallel in-register intermolecular β-sheet model structure of the PrP90–231 fibril and sheds light on the misfolding transitions of PrP in vitro. We hypothesize that glycosylation of position 181 is a key site for prion strain differentiation in vivo.  相似文献   

7.
Amyloid diseases, including Alzheimer's and prion diseases, are each associated with unbranched protein fibrils. Each fibril is made of a particular protein, yet they share common properties. One such property is nucleation-dependent fibril growth. Monomers of amyloid-forming proteins can remain in dissolved form for long periods, before rapidly assembly into fibrils. The lag before growth has been attributed to slow kinetics of formation of a nucleus, on which other molecules can deposit to form the fibril. We have explored the energetics of fibril formation, based on the known molecular structure of a fibril-forming peptide from the yeast prion, Sup35, using both classical and quantum (density functional theory) methods. We find that the energetics of fibril formation for the first three layers are cooperative using both methods. This cooperativity is consistent with the observation that formation of amyloid fibrils involves slow nucleation and faster growth.  相似文献   

8.
Plasma apolipoproteins show alpha-helical structure in the lipid-bound state and limited conformational stability in the absence of lipid. This structural instability of lipid-free apolipoproteins may account for the high propensity of apolipoproteins to aggregate and accumulate in disease-related amyloid deposits. Here, we explore the properties of amyloid fibrils formed by apolipoproteins using human apolipoprotein (apo) C-II as a model system. Hydrogen-deuterium exchange and NMR spectroscopy of apoC-II fibrils revealed core regions between residues 19-37 and 57-74 with reduced amide proton exchange rates compared to monomeric apoC-II. The C-terminal core region was also identified by partial proteolysis of apoC-II amyloid fibrils using endoproteinase GluC and proteinase K. Complete tryptic hydrolysis of apoC-II fibrils followed by centrifugation yielded a single peptide in the pellet fraction identified using mass spectrometry as apoC-II(56-76). Synthetic apoC-II(56-76) readily formed fibrils, albeit with a different morphology and thioflavinT fluorescence yield compared to full-length apoC-II. Studies with smaller peptides narrowed this fibril-forming core to a region within residues 60-70. We postulate that the ability of apoC-II(60-70) to independently form amyloid fibrils drives fibril formation by apoC-II. These specific amyloid-forming regions within apolipoproteins may underlie the propensity of apolipoproteins and their peptide derivatives to accumulate in amyloid deposits in vivo.  相似文献   

9.
Hsp70s (heat shock protein 70 kDa) are central to protein folding, refolding, and trafficking in organisms ranging from archaea to Homo sapiens under both normal and stressed cellular conditions. Hsp70s are comprised of a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide binding site in the NBD and the substrate binding site in the SBD are allosterically linked: ADP binding promotes substrate binding, while ATP binding promotes substrate release. Hsp70s have been linked to inhibition of apoptosis (i.e., cancer) and diseases associated with protein misfolding such as Alzheimer's, Parkinson's, and Huntington's.It has long been a goal to characterize the nature of allosteric coupling in these proteins. However, earlier studies of the isolated NBD could not show any difference in overall conformation between the ATP state and the ADP state. Hence the question: How is the state of the nucleotide communicated between NBD and SBD?Here we report a solution NMR study of the 44-kDa NBD of Hsp70 from Thermus thermophilus in the ADP and AMPPNP states. Using the solution NMR methods of residual dipolar coupling analysis, we determine that significant rotations occur for different subdomains of the NBD upon exchange of nucleotide. These rotations modulate access to the nucleotide binding cleft in the absence of a nucleotide exchange factor. Moreover, the rotations cause a change in the accessibility of a hydrophobic surface cleft remote from the nucleotide binding site, which previously has been identified as essential to allosteric communication between NBD and SBD. We propose that it is this change in the NBD surface cleft that constitutes the allosteric signal that can be recognized by the SBD.  相似文献   

10.
Many proteins form amyloid-like fibrils in vitro under partially or highly unfolding conditions. Recently, we showed that the residual structure in highly unfolded state is closely related to amyloid fibril formation in hen lysozyme. Thus, to better understand the role of the residual structure on amyloid fibril formation, we focused on AL amyloidosis, which results from the extracellular deposition of monoclonal immunoglobulin light-chain variable domains (VLs) as insoluble fibrils. We examined the relationship between the residual structure and amyloid fibril formation on three λ6 recombinant VL (rVλ6) proteins, wild type, Jto, and Wil. Although rVλ6 proteins are highly unfolded in pH 2, 15N NMR transverse relaxation experiments revealed nonrandom structures in regions, which include some hydrophobic residues and a single disulfide bond, indicating the existence of residual structure in rVλ6 proteins. However, the residual structure of Wil was markedly disrupted compared with those of the other proteins, despite there being no significant differences in amino acid sequences. Fibrillation experiments revealed that Wil had a longer lag time for fibril formation than the others. When the single disulfide bond was reduced and alkylated, the residual structure was largely disrupted and fibril formation was delayed in all three rVλ6 proteins. It was suggested that the residual structure in highly unfolded state has a crucial role in amyloid fibril formation in many proteins, even pathogenic ones.  相似文献   

11.
Caseins are a unique and diverse group of proteins present in bovine milk. While their function is presumed to be primarily nutritional, caseins have a remarkable ability to stabilize proteins, i.e., to inhibit protein aggregation and precipitation, that is comparable to molecular chaperones of the small heat-shock protein (sHsp) family. Additionally, sHsps have been shown to inhibit the formation of amyloid fibrils. This study investigated (i) the fibril-forming propensities of casein proteins and their mixture, sodium caseinate, and (ii) the ability of caseins to prevent in vitro fibril formation by kappa-casein. Transmission electron microscopy (TEM) and X-ray fiber diffraction data demonstrated that kappa-casein readily forms amyloid fibrils at 37 degrees C particularly following reduction of its disulfide bonds. The time-dependent increase in thioflavin T fluorescence observed for reduced and nonreduced kappa-casein at 37 degrees C was suppressed by stoichiometric amounts of alphaS- and beta-casein and by the hydrophobic dye 8-anilino-1-naphthalene sulfonate; the inhibition of kappa-casein fibril formation under these conditions was verified by TEM. Our findings suggest that alphaS- and beta-casein are potent inhibitors of kappa-casein fibril formation and may prevent large-scale fibril formation in vivo. Casein proteins may therefore play a preventative role in the development of corpora amylacea, a disorder associated with the accumulation of amyloid deposits in mammary tissue.  相似文献   

12.
The mature form of barley seed low-pI α-amylase (BAA1) possesses a raw starch-binding site in addition to the catalytic site. A truncated cDNA encoding the C-terminal region (aa 281–414) and containing the proposed raw starch-binding domain (SBD) but lacking Trp278/Trp279, a previously proposed starch granule-binding site, was synthesized via PCR and expressed in Escherichia coli as an N-terminal His-Tag fusion protein. SBD was produced in the form of insoluble inclusion bodies that were extracted with urea and successfully refolded into a soluble form via dialysis. To determine binding, SBD was purified by affinity chromatography with cycloheptaamylose as ligand cross-linked to Sepharose. This work demonstrates that a SBD is located in the C-terminal region and retains sufficient function in the absence of the N-terminal, catalytic, and Trp278/279 regions.  相似文献   

13.
Type V collagen (Col V) molecule, a minor component of kidney connective tissues, was found in adult cornea, and has been considered as a regulatory fibril-forming collagen that emerges into type I collagen to trigger the initiation of Col I fiber assembly. Col V was also found in injured, wound healing tissues or placenta, and was considered as a dysfunctional extracellular matrix (ECM). Reconstituted Col V fibril was characterized as an ECM to detach cells in vitro, and our previous study showed that the reconstituted Col V fibril facilitated the migration of glomerular endothelial cells and induced ECM remodeling, whereas Col V molecules stabilized cells. These facts suggest that not only the structure but also the function of Col V fibril are different from Col V molecule. Recently, Col V molecule has been reported existing in various developing tissues such as bone and lung, but Col V fibril has not been reported yet. In this study, we firstly explored the existence of Col V fibril in metanephroi, and found it distributed in the immature kidney tissues whereas disappeared when the tissues reached mature. It is likely that Col V fibril may form a prototype of pericellular microenvironment and the transient existence of Col V fibril may play a role as the pioneering ECM during metanephric tissue morphogenesis.  相似文献   

14.
A number of naturally occurring mutations of apolipoprotein (apo) A-I, the major protein of HDL, are known to be associated with hereditary amyloidosis and atherosclerosis. Here, we examined the effects of the G26R point mutation in apoA-I (apoA-IIowa) on the structure, stability, and aggregation propensity to form amyloid fibril of full-length apoA-I and the N-terminal fragment of apoA-I. Circular dichroism and fluorescence measurements demonstrated that the G26R mutation destabilizes the N-terminal helix bundle domain of full-length protein, leading to increased hydrophobic surface exposure, whereas it has no effect on the initial structure of the N-terminal 1–83 fragment, which is predominantly a random coil structure. Upon incubation for extended periods at neutral pH, the N-terminal 1–83 variants undergo a conformational change to β-sheet-rich structure with a great increase in thioflavin T fluorescence, whereas no structural change is observed in full-length proteins. Comparison of fibril-forming propensity among substituted mutants at Gly-26 position of 1–83 fragments demonstrated that the G26R mutation enhances the nucleation step of fibril formation, whereas G26K and G26E mutations have small or inhibiting effects on the formation of fibrils. These fibrils of the 1–83 variants have long and straight morphology as revealed by atomic force microscopy and exhibited significant toxicity with HEK293 cells. Our results indicate dual critical roles of the arginine residue at position 26 in apoA-IIowa: destabilization of the N-terminal helix bundle structure in full-length protein and enhancement of amyloid fibril formation by the N-terminal 1–83 fragment.  相似文献   

15.
Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein   总被引:5,自引:0,他引:5  
Pyrroloquinoline quinone (PQQ) is a noncovalently bound cofactor in the bacterial oxidative metabolism of alcohols. PQQ also exists in plants and animals. Due to its inherent chemical feature, namely its free-radical scavenging properties, PQQ has been drawing attention from both the nutritional and the pharmacological viewpoint. alpha-Synuclein, a causative factor of Parkinson's disease (PD), has the propensity to oligomerize and form fibrils, and this tendency may play a crucial role in its toxicity. We show that PQQ prevents the amyloid fibril formation and aggregation of alpha-synuclein in vitro in a PQQ-concentration-dependent manner. Moreover, PQQ forms a conjugate with alpha-synuclein, and this PQQ-conjugated alpha-synuclein is also able to prevent alpha-synuclein amyloid fibril formation. This is the first study to demonstrate the characteristics of PQQ as an anti-amyloid fibril-forming reagent. Agents that prevent the formation of amyloid fibrils might allow a novel therapeutic approach to PD. Therefore, together with further pharmacological approaches, PQQ is a candidate for future anti-PD reagent compounds.  相似文献   

16.
Amyloid formation occurs when a precursor protein misfolds and aggregates, forming a fibril nucleus that serves as a template for fibril growth. Glycosaminoglycans are highly charged polymers known to associate with tissue amyloid deposits that have been shown to accelerate amyloidogenesis in vitro. We studied two immunoglobulin light chain variable domains from light chain amyloidosis patients with 90% sequence identity, analyzing their fibril formation kinetics and binding properties with different glycosaminoglycan molecules. We find that the less amyloidogenic of the proteins shows a weak dependence on glycosaminoglycan size and charge, while the more amyloidogenic protein responds only minimally to changes in the glycosaminoglycan. These glycosaminoglycan effects on fibril formation do not depend on a stable interaction between the two species but still show characteristic traits of an interaction-dependent mechanism. We propose that transient, predominantly electrostatic interactions between glycosaminoglycans and the precursor proteins mediate the acceleration of fibril formation in vitro.  相似文献   

17.
The N-terminal amino acid 1–83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1–83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8–33 and 8–33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1–83 fragment and 8–33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1–83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.  相似文献   

18.
Numerous human disorders are associated with the formation of protein fibrils. The fibril-forming capacity of a protein has been found in recent studies to be determined by a short segment of residues that forms a dual beta-sheet, called a steric zipper, in the spine of the fibril. The question arises as to whether a fibril-forming segment, when inserted within the sequence of a globular protein, will invariably cause the protein to form fibrils. Here we investigate this question by inserting the known fibril-forming segment NNQQNY into the globular enzyme, T7 endonuclease I. From earlier studies, we know that in its fibril form, NNQQNY is in an extended conformation. We first found that the inserted NNQQNY stimulates fibril formation of T7 endonuclease I in solution. Thus NNQQNY within T7 endonuclease I can exist in an extended conformation, capable of forming the steric zipper in the core of a fibril. We also found that T7 endonuclease I folds into a decamer that does not form fibrils. We determined the structure of the decamer by X-ray crystallography, finding an unusual oligomer without point group symmetry, and finding that the NNQQNY segments within the decamer adopt two twisted conformations, neither is apparently able to fibrillize. We conclude that twisting of fibril forming sequences from the fully extended conformation, imposed by the context of their placement in proteins, can interfere with fibril formation.  相似文献   

19.
Collagen-binding proteins (CBPs) play important roles in various physiological events. Some CBPs are regarded as targets for drug development; for example, platelet glycoprotein VI (GPVI) and heat shock protein 47 (HSP47) are promising targets for the development of novel antiplatelet and antifibrotic drugs, respectively. However, no systematic screening method to search compounds that inhibit collagen–CBP interactions have been developed, and only a few CBP inhibitors have been reported to date. In this study, a facile turbidimetric multiwell plate assay was developed to evaluate inhibitors of CBPs. The assay is based on the finding that CBPs retard spontaneous collagen fibril formation in vitro and that fibril formation is restored in the presence of compounds that interfere with the collagen–CBP interactions. Using the same platform, the assay was performed in various combinations of fibril-forming collagen types and CBPs. This homogeneous assay is simple, convenient, and suitable as an automated high-throughput screening system.  相似文献   

20.
Inter-segmental interaction at the growing tip of the amyloid fibril of beta2-microglobulin (beta2m) was investigated using IR microscopy. Cross-seeded fibril formation was implemented, in which the amyloid fibril of the #21-31 fragment of beta2m (fA[#21-31]) was generated on the beta2m amyloid fibril (fA[beta2m]) as a seed. Differences between the IR spectra of the cross-seeded fibril and those of the seed were attributed to the contribution from the tip, whose structure is discussed. The results indicated that 6.5 +/- 1.0 out of 11 residues of the fA[#21-31] tip on fA[beta2m] are contained in a beta-sheet at pH 2.5, which was smaller than the corresponding value (7.5 +/- 1.1 residues) of the spontaneous fA[#21-31] at pH 2.5. The tip was suggested to have a planar structure, indicating the planarity of the interacting segment. The N-terminal region of fA[#21-31] in the fibril is more exposed to the solvent than that in the tip, and vice versa for the C-terminal region. This is consistent with the different protonation levels of these regions, and the direction of peptide in the fibrils is determined from these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号