首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CK2 is a multifunctional kinase, involved in cell growth, apoptosis, DNA integrity preservation, viral infection, and many other biological processes. Based on an analysis of phosphopeptides database derived from phosphoproteomic studies we previously identified a list of potential new CK2 substrates, including, among others, Programmed Cell Death 5 (PDCD5), a protein involved in cell death and down-regulated in different forms of human tumors. Here we provide experimental evidence that PDCD5 is indeed a bona fide substrate of CK2. PDCD5 is phosphorylated in vitro by both CK2α subunit and by the CK2 holoenzyme at a residue, S118, which is found phosphorylated in vivo. We also show that PDCD5 is phosphorylated by CK2 in 293T cells. Transfection of the non-phosphorylatable mutant (S118A) impairs the PDCD5 acceleration of either doxorubimicin- or UV-induced apoptosis in U2OS cells. Our results suggest a functional link between the CK2 phosphorylation and the apoptotic potential of PDCD5.  相似文献   

2.
The [32P]phosphoamino acids in proteins of first-trimester and term-cultured human placentas have been separated and their relative amounts have been measured. Significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first-trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

3.
Casein kinase 2 (CK2) is a ubiquitous, multifunctional eukaryotic serine/threonine kinase that phosphorylates an array of proteins. CK2 is a heterotetramer composed of two catalytic (alpha,alpha(')) and two regulatory (beta) subunits. CK2 plays an essential role in regulatory pathways in cell transformation and proliferation. But the role and function of the individual subunits of CK2, which are not in the holoenzyme, are not yet clear. Northern blot analysis reveals the highest CK2beta activity in mouse testicles and brain. By employing a yeast two-hybrid screen to identify the proteins that interact with CK2beta, we have isolated a cDNA clone encoding a 14-kDa protein with homology to dynein light chains and have designated it as Tctex4. CK2beta interacts specifically with Tctex4 both in a yeast two-hybrid system and in an in vitro interaction assay. Northern blot and in situ hybridization showed that Tctex4 is a novel gene that is expressed in mouse testis.  相似文献   

4.
Phosphorylation of the connexin43 C-terminal (Cx43CT) domain regulates gap junction intercellular communication. However, an understanding of the mechanisms by which phosphorylation exerts its effects is lacking. Here, we test the hypothesis that phosphorylation regulates Cx43 gap junction intercellular communication by mediating structural changes in the C-terminal domain. Circular dichroism and nuclear magnetic resonance were used to characterize the effects of phosphorylation on the secondary structure and backbone dynamics of soluble and membrane-tethered Cx43CT domains. Cx43CT phospho-mimetic isoforms, which have Asp substitutions at specific Ser/Tyr sites, revealed phosphorylation alters the α-helical content of the Cx43CT domain only when attached to the membrane. The changes in secondary structure are due to variations in the conformational preference and backbone flexibility of residues adjacent and distal to the site(s) of modification. In addition to the known direct effects of phosphorylation on molecular partner interactions, the data presented here suggest phosphorylation may also indirectly regulate binding affinity by altering the conformational preference of the Cx43CT domain.  相似文献   

5.
Protein kinase CK2 is ubiquitously expressed. The holoenzyme is composed of two catalytic α- or α′-subunits and two regulatory β-subunits but evidence is accumulating that the subunits can function independently. The composition of the holoenzyme as well as the expression of the individual subunits varies in different tissues, with high expression of CK2α′ in testis and brain. CK2 phosphorylates a number of different substrates which are implicated in basal cellular processes such as proliferation and survival of cells. Here, we report a new substrate, KIF5C, which is a member of the kinesin 1 family of motor neuron proteins. Phosphorylation of KIF5C was demonstrated in vitro and in vivo. Using deletion mutants, a peptide library, and mutation analysis a phosphorylation site for CK2 was mapped to amino acid 338 which is located in the non-motor domain of KIF5C. Interestingly, KIF5C is phosphorylated by holoenzymes composed of CK2α/CK2β and CK2α′/CK2β as well as by CK2α′ alone but not by CK2α alone.  相似文献   

6.
Regulators of G protein signaling (RGSs) are inducibly expressed in response to various stimuli and the up-regulation of RGSs leads to significant decreases in GPCR responsiveness. Isoproterenol, an adrenergic receptor agonist, stimulated RGS2 mRNA in C6 rat astrocytoma cells. The up-regulation of RGS2 mRNA was abrogated by genistein, a protein tyrosine kinase inhibitor (PTK), and by broad-spectrum protein kinase C (PKC) inhibitors (staurosporine and GF109203X). alpha-Adrenergic antagonist (prazocin), beta-adrenergic antagonist (prazocin), and pertussis toxin only partially blocked the RGS2 up-regulation, suggesting that the RGS2 up-regulation is concomitantly mediated by Galphai, Galphas, and Galphaq. It is interesting to note that SB203580, a potent p38 mitogen-activated protein kinase (MAPK) inhibitor, completely inhibited the isoproterenol-mediated RGS2 expression. In addition, isoproterenol also markedly stimulated RGS2 mRNA in rat primary astrocytes, which were sensitive to SB203580 and staurosporine. Therefore, our data suggest that adrenergic receptor-mediated signaling (induced by isoproterenol) may be involved in the regulation of RGS2 expression in astrocytes via activating PTK, PKC, and p38 MAPK.  相似文献   

7.
Repair of DNA double-strand break(DSB) is critical for the maintenance of genome integrity. A class of DSB-induced small RNAs(di RNAs) has been shown to play an important role in DSB repair. In humans,di RNAs are associated with Ago2 and guide the recruitment of Rad51 to DSB sites to facilitate repair by homologous recombination(HR). Ago2 activity has been reported to be regulated by phosphorylation under normal and hypoxic conditions. However, the role of Ago2 phosphorylation in DNA damage repair is unexplored. Here, we show that S672, S828, T830, and S831 of human Ago2 are phosphorylated in response to ionizing radiation(IR). S672 A mutation of Ago2 leads to significant reduction in Rad51 foci formation and HR efficiency. We further show that defective association of Ago2 S672 A variant with DSB sites, instead of defects in di RNA and Rad51 binding, may account for decreased Rad51 foci formation and HR efficiency.Our study reveals a novel regulatory mechanism for the function of Ago2 in DNA repair.  相似文献   

8.
The cytosolic protein synaphin/complexin critically regulates fast neurotransmitter release at the synapse by binding to SNARE complex. However, the exact mechanism of its action remains unclear, and very little is known about how it is physiologically regulated. Here we show that synaphins (Syps) 1 and 2 can be phosphorylated in vitro by protein kinase CK2 (CK2). The only phosphorylation site by CK2 was serine-115 (Ser-115) of Syps 1 and 2. Syps 1 and 2 exhibited higher affinities to native and recombinant SNARE complexes when phosphorylated at Ser-115. We found Ser-115-phosphorylated Syp 1 (pS115-Syp 1) in the cytosolic fraction of the rat brain using polyclonal antibody specific to pS115-Syps 1 and 2. These results suggest that the activity of Syp is regulated by CK2 phosphorylation of its Ser-115 in vivo. The phosphorylation may provide a new route for modulating fast neurotransmitter release.  相似文献   

9.
The transmembrane protein nephrin is a key component of the kidney slit diaphragm that contributes to the morphology of podocyte foot processes through signaling to the underlying actin cytoskeleton. We have recently reported that tyrosine phosphorylation of the cytoplasmic tail of nephrin facilitates recruitment of Nck SH2/SH3 adaptor proteins and subsequent actin remodeling and that phosphorylation of the Nck binding sites on nephrin is decreased during podocyte injury. We now demonstrate that Nck directly modulates nephrin phosphorylation through formation of a signaling complex with the Src family kinase Fyn. The ability of Nck to enhance nephrin phosphorylation is compromised in the presence of a Src family kinase inhibitor and when the SH3 domains of Nck are mutated. Furthermore, induced loss of Nck expression in podocytes in vivo is associated with a rapid reduction in nephrin tyrosine phosphorylation. Our results suggest that Nck may facilitate dynamic signaling events at the slit diaphragm by promoting Fyn-dependent phosphorylation of nephrin, which may be important in the regulation of foot process morphology and response to podocyte injury.  相似文献   

10.
11.
The vast majority of serine/threonine protein kinases have a strong preference for ATP over GTP as a phosphate donor. CK2 (Casein kinase 2) is an exception to this rule and in this study we investigate whether calcium/calmodulin-dependent protein kinase II (CaMKII) has the same extended nucleotide range. Using the Drosophila enzyme, we have shown that CaMKII uses Mg2+GTP with a higher Km and Vmax compared to Mg2+ATP. Substitution of Mn2+ for Mg2+ resulted in a much lower Km for GTP, while nearly abolishing the ability of CaMKII to use ATP. These similar results were obtained with rat αCaMKII, showing the ability to use GTP to be a general property of CaMKII. The Vmax difference between Mg2+ATP and Mg2+GTP was found to be due to the fact that ADP is a potent inhibitor of phosphorylation, while GDP has modest effects. There were no differences found between sites autophosphorylated by ATP and GTP, either by partial proteolysis or mass spectrometry. Phosphorylation of fly head extract revealed that similar proteins are substrates for CaMKII whether using Mg2+ATP or Mg2+GTP. This new information confirms that CaMKII can use both ATP and GTP, and opens new avenues for the study of regulation of this kinase.  相似文献   

12.

Aim

Aquaporin-4(AQP4) expression in the brain with relation to edema formation following focal cerebral ischemia was investigated. Studies have shown that brain edema is one of the significant factors in worsening stroke outcomes. While many mechanisms may aggravate brain injury, one such potential system may involve AQP4 up regulation in stroke patients that could result in increased edema formation. Post administration of melatonin following ischemic stroke reduces AQP4 mediated brain edema and confers neuroprotection.

Materials and methods

An in-silico approach was undertaken to confirm effective melatonin-AQP4 binding. Rats were treated with 5 mg/kg, i.p. melatonin or placebo at 30 min prior, 60 min post and 120 min post 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. Rats were evaluated for battery of neurological and motor function tests just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, apoptosis study and western blot experiments.

Key findings

Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde (MDA) were also found to be significantly reduced in ischemic brain regions in treated animals. Melatonin potentiated intrinsic antioxidant status, inhibited acid mediated rise in intracellular calcium levels, decreased apoptotic cell death and also markedly inhibited protein kinase C (PKC) influenced AQP4 expression in the cerebral cortex and dorsal striatum.

Significance

Melatonin confers neuroprotection by protein kinase C mediated AQP4 inhibition in ischemic stroke.  相似文献   

13.
Polo-like kinase-1 (Plk1) is essential for progression of mitosis and localizes to centrosomes, central spindles, midbody, and kinetochore. Ran, a small GTPase of the Ras superfamily, plays a role in microtubule dynamics and chromosome segregation during mitosis. Although Ran-binding protein-1 (RanBP1) has been reported as a regulator of RanGTPase for its mitotic functions, the action mechanism between Ran and RanBP1 during mitosis is still unknown. Here, we demonstrated in vitro and in vivo phosphorylation of RanBP1 by Plk1 as well as the importance of phosphorylation of RanBP1 in the interaction between Plk1 and Ran during early mitosis. Both phosphorylation-defective and N-terminal deletion mutant constructs of RanBP1 disrupted the interaction with Ran, and depletion of Plk1 also disrupted the formation of a complex between Ran and RanBP1. In addition, the results from both ectopic expression of phosphorylation-defective mutant construct and a functional complementation on RanBP1 deficiency with this mutant indicated that phosphorylation of RanBP1 by Plk1 might be crucial to microtubule nucleation and spindle assembly during mitosis.  相似文献   

14.
Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos   总被引:2,自引:0,他引:2  
Dorsal axis formation in Xenopus embryos is dependent upon asymmetrical localization of beta-catenin, a transducer of the canonical Wnt signaling pathway. Recent biochemical experiments have implicated protein kinase CK2 as a regulator of members of the Wnt pathway including beta-catenin. Here, we have examined the role of CK2 in dorsal axis formation. CK2 was present in the developing embryo at an appropriate time and place to participate in dorsal axis formation. Overexpression of mRNA encoding CK2 in ventral blastomeres was sufficient to induce a complete ectopic axis, mimicking Wnt signaling. A kinase-inactive mutant of CK2alpha was able to block ectopic axis formation induced by XWnt8 and beta-catenin and was capable of suppressing endogenous axis formation when overexpressed dorsally. Taken together, these studies demonstrate that CK2 is a bona fide member of the Wnt pathway and has a critical role in the establishment of the dorsal embryonic axis.  相似文献   

15.
Cse4 is the centromeric histone H3 variant in budding yeast. Psh1 is an E3 ubiquitin ligase that controls Cse4 levels through proteolysis. Here we report that Psh1 is phosphorylated by the Cka2 subunit of casein kinase 2 (CK2) to promote its E3 activity for Cse4. Deletion of CKA2 significantly stabilized Cse4. Consistent with phosphorylation promoting the activity of Psh1, Cse4 was stabilized in a Psh1 phosphodepleted mutant strain in which the major phosphorylation sites were changed to alanines. Phosphorylation of Psh1 did not control Psh1-Cse4 or Psh1-Ubc3(E2) interactions. Although Cse4 was highly stabilized in a cka2Δ strain, mislocalization of Cse4 was mild, suggesting that Cse4 misincorporation was prevented by the intact Psh1-Cse4 association. Supporting this idea, Psh1 was also stabilized in a cka2Δ strain. Collectively our data suggest that phosphorylation is crucial in Psh1-assisted control of Cse4 levels and that the Psh1-Cse4 association itself functions to prevent Cse4 misincorporation.  相似文献   

16.
The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr72) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr72, we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr72 does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr72 regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.  相似文献   

17.
Protein kinase CK2 (formerly casein kinase II), an enzyme that participates in a wide variety of cellular processes, has traditionally been classified as a stable tetrameric complex consisting of two catalytic CK2alpha or CK2alpha' subunits and two regulatory CK2beta subunits. While consideration of CK2 as a tetrameric complex remains relevant, significant evidence has emerged to challenge the view that its individual subunits exist exclusively within these complexes. This review will summarize biochemical and genetic evidence indicating that the regulatory CK2beta subunit exists and performs functions independently of CK2 tetramers. For example, unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumors. Furthermore, localization studies including live cell imaging have demonstrated that while the catalytic and regulatory subunits of CK2 exhibit extensive co-localization, independent mobility of the individual CK2 subunits can also be observed within cells. Identification of proteins that interact with CK2beta in the absence of catalytic CK2 subunits reinforces the notion that CK2beta has functions distinct from CK2 and begins to offer insights into these CK2-independent functions. In this respect, the discovery that CK2beta can interact with and modulate the activity of a number of other serine/threonine protein kinases including A-Raf, c-Mos and Chk1 is particularly striking. This review will discuss the interactions between CK2beta and these protein kinases with special emphasis on the properties of CK2beta that mediate these interactions and on the implications of these interactions in yielding new prospects for elucidation of the cellular functions of CK2beta.  相似文献   

18.
19.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

20.
In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Δ cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Δ cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1+ or cyr1Δ S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号