首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor activity-modifying proteins (RAMPs) enable calcitonin receptor-like receptor (CRLR) to function as a calcitonin gene-related peptide receptor (CRLR/RAMP1) or an adrenomedullin (AM) receptor (CRLR/RAMP2 or -3). Here we investigated the functions of the cytoplasmic C-terminal tails (C-tails) of human RAMP1, -2, and -3 (hRAMP1, -2, and -3) by cotransfecting their C-terminal deletion or progressive truncation mutants into HEK-293 cells stably expressing hCRLR. Deletion of the C-tail from hRAMP1 had little effect on the surface expression, function, or intracellular trafficking of the mutant heterodimers. By contrast, deletion of the C-tail from hRAMP2 disrupted transport of hCRLR to the cell surface, resulting in significant reductions in (125)I-hAM binding and evoked cAMP accumulation. The transfection efficiency for the hRAMP2 mutant was comparable with that for wild-type hRAMP2; moreover, immunocytochemical analysis showed that the mutant hRAMP2 remained within the endoplasmic reticulum. FACS analysis revealed that deleting the C-tail from hRAMP3 markedly enhances AM-evoked internalization of the mutant heterodimers, although there was no change in agonist affinity. Truncating the C-tails by removing the six C-terminal amino acids of hRAMP2 and -3 or exchanging their C-tails with one another had no effect on surface expression, agonist affinity, or internalization of hCRLR, which suggests that the highly conserved Ser-Lys sequence within hRAMP C-tails is involved in cellular trafficking of the two AM receptors. Notably, deleting the respective C-tails from hRAMPs had no effect on lysosomal sorting of hCRLR. Thus, the respective C-tails of hRAMP2 and -3 differentially affect hCRLR surface delivery and internalization.  相似文献   

2.
When co-expressed with receptor activity-modifying protein (RAMP) 1, calcitonin receptor-like receptor (CRLR) can function as a receptor for both calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). To investigate the structural determinants of ligand binding specificity, we examined the extracellular domain of human (h) RAMP1 using various deletion mutants. Co-expression of the hRAMP1 mutants with hCRLR in HEK-293 cells revealed that deletion of residues 91-94, 96-100, or 101-103 blocked [125I]CGRP binding and completely abolished intracellular cAMP accumulation normally elicited by CGRP or AM. On the other hand, the deletion of residues 78-80 or 88-90 significantly attenuated only AM-evoked responses. In all of these cases, the receptor heterodimers were fully expressed at the cell surface. Substituting alanine for residues 91-103 one at a time had little effect on CGRP-induced responses, indicating that although this segment is essential for high affinity agonist binding to the receptors, none of the residues directly interacts with either CGRP or AM. This finding suggests that RAMPs probably determine ligand specificity by contributing to the structure of the ligand-binding pocket or by allosteric modulation of the conformation of the receptor. Interestingly, the L94A mutant up-regulated surface expression of the receptor heterodimer to a greater degree than wild-type hRAMP1, thereby increasing CGRP binding and signaling. L94A also significantly increased cell surface expression of the hRAMP1 deletion mutant D101-103 when co-transfected with hCRLR, and expression of a L94A/D101-103 double mutant markedly attenuated the activity of endogenous RAMP1 in HEK-293T cells.  相似文献   

3.
Steiner S  Muff R  Gujer R  Fischer JA  Born W 《Biochemistry》2002,41(38):11398-11404
Three receptor-activity-modifying proteins (RAMP) define specific interactions between calcitonin (CT) gene-related peptide (CGRP), adrenomedullin (AM) and amylin, and a CT receptor or a CT receptor-like receptor (CRLR). Both form heterodimeric RAMP/receptor complexes at the cell surface. This association represents a novel principle of G protein-coupled receptor function. RAMP1 is transported to the cell surface together with the CRLR or the CT receptor. Here, we have investigated the functional relevance of the short C-terminal intracellular tail QSKRTEGIV and of the single transmembrane domain of human (h) RAMP1 for their interactions with the hCRLR to constitute a CGRP receptor. To this end, hRAMP1 has been sequentially truncated from the C-terminus, and [(125)I]h alpha CGRP/hRAMP1/hCRLR association at the cell surface and cAMP accumulation in response to h alpha CGRP have been examined. With the C-terminal truncation of hRAMP1 by four amino acids wild-type hRAMP1 function was maintained, and the hCRLR was required for the transport of hRAMP1 to the cell surface. Further truncation of hRAMP1 through removal of the remaining five intracellular amino acids revealed CRLR-independent cell surface delivery but otherwise normal hRAMP1 activity. Sequential shortening of the hRAMP1 transmembrane domain resulted in progressively impaired association with the hCRLR and, as a consequence, abolished CGRP receptor function. In conclusion, the intracellular QSKRT sequence adjacent to the transmembrane domain of hRAMP1 provides a signal for intracellular retention. The sequence is unrelated to consensus endoplasmic reticulum retention/retrieval motives and overridden by the presence of the hCRLR. The entire single transmembrane domain of hRAMP1 together with one hydrophilic amino acid residue at its C-terminus is required for the formation of a fully functional CGRP/hRAMP1/hCRLR receptor complex.  相似文献   

4.
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [125I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser449 to Ser467 were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.  相似文献   

5.
When co-expressed with a receptor activity-modifying protein (RAMP) accessory protein, calcitonin receptor-like receptor (CRLR) can function as a calcitonin gene-related peptide receptor (CRLR-RAMP1) or an adrenomedullin (AM) receptor (CRLR-RAMP2/3). Here we report on the structural domain(s) involved in selective AM binding that were examined using various RAMP chimeras and deletion mutants. Co-expression of chimeric RAMPs and CRLR in HEK293 cells revealed that residues 77-101, situated in the extracellular N-terminal domain of human RAMP2 (hRAMP2), were crucial for selective AM-evoked cAMP production. More detailed analysis showed that deletion of hRAMP2 residues 86-92 significantly attenuated high-affinity (125)I-AM binding and AM-evoked cAMP production despite full cell surface expression of the receptor heterodimer and that deletion of hRAMP3 residues 59-65 had a similar effect. There is little sequence identity between hRAMP3 residues 59-65 and hRAMP2 residues 86-92; moreover, substituting alanine for Trp(86) (Ala(87)), Met(88), Ile(89), Ser(90), Arg(91), or Pro(92) of hRAMP2 had no effect on AM-evoked cAMP production. It thus seems unlikely that any one amino acid residue is responsible for determining selective AM binding or that AM binds directly to these peptide segments. Instead these findings suggest that the respective seven-amino acid sequences confer selectivity either by directly contributing to the structure of ligand binding pocket or by allosteric modulation of the conformation of CRLR.  相似文献   

6.
Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [(125)I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr(130)-Val(131) sequence in the RAMP3 TMD with the corresponding sequence (Ile(157)-Pro(158)) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala(130)-Ala(131) did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a strategy for promoting receptor internalization/resensitization.  相似文献   

7.
The initially orphan human calcitonin (CT) receptor-like receptor (hCRLR) interacts with novel accessory receptor activity-modifying protein 1 (RAMP1) to reveal a functional CT gene-related peptide (CGRP) receptor. In mammalian cells, RAMP1 is required for mature N-glycosylation of the hCRLR predicted to occur at Asn(60), Asn(112), and/or Asn(117) in the amino-terminal extracellular domain. Here we have shown that the substitution of Asn(117) with Ala, Gln, Thr, or Pro abolished CGRP-evoked cAMP formation which was left unchanged when the Asn(117) was replaced with Asp. Moreover, the hCRLR and the Asn(117) mutants exhibited comparable N-glycosylation and cell surface expression, and the association with RAMP1 was only slightly impaired. In contrast, the hCRLR Asn(60,112) to Thr double mutant exhibited defective RAMP1-dependent N-glycosylation, and impaired cell surface expression and CGRP receptor function. Unlike Asn(60) and Asn(112), Asn(117) is normally not N-glycosylated, but essential for CGRP binding to the hCRLR-RAMP1 complex.  相似文献   

8.
Adrenomedullin (AM) is a novel hypotensive peptide that exerts a variety of strongly protective effects against multiorgan damage. AM-specific receptors were first identified as heterodimers composed of calcitonin-receptor-like receptor (CLR), a G protein coupled receptor, and one of two receptor activity-modifying proteins (RAMP2 or RAMP3), which are accessory proteins containing a single transmembrane domain. RAMPs are required for the surface delivery of CLR and the determination of its phenotype. CLR/RAMP2 (AM1 receptor) is more highly AM-specific than CLR/RAMP3 (AM2 receptor). Although there have been no reports showing differences in intracellular signaling via the two AM receptors, in vitro studies have shed light on their distinct trafficking and functionality. In addition, the tissue distributions of RAMP2 and RAMP3 differ, and their gene expression is differentially altered under pathophysiological conditions, which is suggestive of the separate roles played byAM1 and AM2 receptors in vivo. Both AM and the AM1 receptor, but not the AM2 receptor, are crucial for the development of the fetal cardiovascular system and are able to effectively protect against various vascular diseases. However, AM2 receptors reportedly play an important role in maintaining a normal body weight in old age and may be involved in immune function. In this review article, we focus on the shared and separate functions of the AM receptor subtypes and also discuss the potential for related drug discovery. In addition, we mention their possible function as receptors for AM2 (or intermedin), an AM-related peptide whose biological functions are similar to those of AM.  相似文献   

9.
The receptors for the neuropeptide calcitonin (CT) gene-related peptide (CGRP) and the multifunctional peptide hormone adrenomedullin (AM) are calcitonin-like receptor (CLR)/receptor-activity-modifying protein (RAMP) 1 and CLR/RAMP2 heterodimers, respectively. Here, the amino acid sequence TRNKIMT, corresponding to the residues 14-20 of the N terminus of the mouse (m) CLR, was found to be required for a functional mCLR/RAMP2 AM receptor. The deletion of amino acids 14-20 (Delta14-20) or their substitution by alanine (14-20A) did not affect the heterodimerization of the mCLR with mRAMP1 or mRAMP2, and the levels of expression at the surface of transiently transfected COS-7 cells were not altered. In mRAMP1/mCLR- or mRAMP1/mCLR-(Delta14-20)-expressing cells CGRP stimulated cAMP formation with EC(50) values of 0.12 +/- 0.01 and 1.5 +/- 0.4 nm, respectively. In mRAMP2/mCLR-expressing cells the EC(50) of AM was 0.8 +/- 0.2 nm. However, in cells expressing mRAMP2/mCLR-(Delta14-20) up to 10(-6) m AM failed to stimulate cAMP production. In mRAMP2/mCLR-(14-20A) expressing cells the cAMP response to AM was minimally restored, and the EC(50) was >100 nm. In conclusion, the deletion of the amino acid sequence TRNKIMT of the extreme N terminus of the mCLR maintained CGRP receptor function of mRAMP1/receptor heterodimers, but AM no longer activated the mutant mCLR-(Delta14-20) in the presence of mRAMP2. The TRNKIMT sequence is required for normal mCLR/mRAMP2 association, and as a consequence, high affinity AM binding signaling the activation of adenylyl cyclase.  相似文献   

10.
The calcitonin-like receptor (CLR) associated with receptor-activity-modifying proteins (RAMP) 1 or -2 recognizes calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), respectively. The amino acid sequence CNRTWDGWLCW corresponding to residues 64-74 in the extracellular N-terminus of the CLR is conserved. The Asp(69) (D(69)) is present in all family B1 G-protein-coupled receptors. Here the D(69) of a V5-tagged mouse CLR has been mutated to Ala (A), Glu (E), and Asn (N). The function of the intact and the mutant CLR was investigated in COS-7 cells coexpressing myc-tagged mouse RAMP1 or -2. In CLR/RAMP1 and -2 expressing cells CGRP and AM stimulated cAMP formation with an EC(50) of 0.17 and 0.50 nM, respectively. The expression of the D69A, D69E, and D69N mutants at the cell surface was comparable to that of the intact CLR. cAMP stimulation by CGRP and AM was abolished in the D69A mutant. With the D69E mutant the EC(50) of CGRP and AM were 1000-fold higher than those with the intact CLR. With the D69N mutant the EC(50) of CGRP was 0.48 nM and that of AM 0.44 nM, but the maximal cAMP formation was reduced to 24% and to 12% of cells with the intact CLR. Co-immunoprecipitation of RAMP1 with the CLR, indicating complex formation, was reduced with the D69A, D69N, and D69E mutants. RAMP2 co-precipitated with the mutant receptors indistinguishable from the intact CLR. In conclusion, mutation of D69 to N, E or A in the CLR did not affect its expression at the cell surface, but impaired or abolished the CGRP and AM receptor function in the presence of RAMP1 and -2, respectively.  相似文献   

11.
The receptor activity-modifying proteins (RAMPs) and the calcitonin receptor-like receptor (CRLR) are both required to generate adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) receptors. A mature, fully glycosylated, form of CRLR was associated with (125)I-CGRP binding, upon co-expression of RAMP1 and CRLR. In contrast, RAMP2 and -3 promoted the expression of smaller, core-glycosylated, CRLR forms, which were linked to AM receptor pharmacology. Since core glycosylation is classically a trademark of immature proteins, we tested the hypothesis that the core-glycosylated CRLR forms the AM receptor. Although significant amounts of core-glycosylated CRLR were produced upon co-expression with RAMP2 or -3, cross-linking experiments revealed that (125)I-AM only bound to the fully glycosylated forms. Similarly, (125)I-CGRP selectively recognized the mature CRLR species upon co-expression with RAMP1, indicating that the glycosylation does not determine ligand-binding selectivity. Our results also show that the three RAMPs lie close to the peptide binding pocket within the CRLR-RAMP heterodimers, since (125)I-AM and (125)I-CGRP were incorporated in RAMP2, -3, and -1, respectively. Cross-linking also stabilized the peptide-CRLR-RAMP ternary complexes, with the expected ligand selectivity, indicating that the fully processed heterodimers represent the functional receptors. Overall, the data indicate that direct protein-protein interactions dictate the pharmacological properties of the CRLR-RAMP complexes.  相似文献   

12.
Rat RAMP domains involved in adrenomedullin binding specificity   总被引:1,自引:0,他引:1  
When coexpressed with receptor activity-modifying protein (RAMP)2 or -3, calcitonin receptor-like receptor (CRLR) functions as an adrenomedullin (AM) receptor (CRLR/RAMP2 or -3). Coexpression of rat (r)CRLR with rRAMP deletion mutants in HEK293T cells revealed that deletion of residues 93-99 from rRAMP2 or residues 58-64 from rRAMP3 significantly inhibits high-affinity [125I]AM binding and AM-evoked cAMP production, despite full cell surface expression of the receptor heterodimer. Apparently, these two seven-residue segments are key determinants of high-affinity agonist binding to rAM receptors and of receptor functionality. Consequently, their deletion yields peptides that are able to serve as negative regulators of AM receptor function.  相似文献   

13.
Calcitonin gene‐related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor‐like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP‐CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1‐CLR ECD fusion purified as a monomer, whereas the RAMP2‐CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27‐37) and AM(37‐52) fragments were identified as the minimal ECD complex binding regions. The CGRP C‐terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C‐terminal amide group was essential for ECD binding. Alanine‐scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries.  相似文献   

14.
Steiner S  Born W  Fischer JA  Muff R 《FEBS letters》2003,555(2):285-290
The receptor-activity-modifying protein (RAMP) 1 is a single-transmembrane-domain protein associated with the calcitonin-like receptor (CLR) to reveal a calcitonin gene-related peptide (CGRP) receptor. The extracellular region of RAMP1 contains six conserved cysteines. Here, Cys(27) in myc-tagged human (h) RAMP1 was deleted (hRAMP1Delta1), and Cys(40), Cys(57), Cys(72), Cys(82) and Cys(104) were each replaced by Ala. In COS-7 cells expressing hCLR/myc-hRAMP1Delta1 or -C82A, cell surface expression, [(125)I]halphaCGRP binding and cAMP formation in response to halphaCGRP were similar to those of hCLR/myc-hRAMP1. Cell surface expression of myc-hRAMP1-C72A was reduced to 24+/-7% of myc-hRAMP1, and that of -C40A, -C57A and -C104A was below 10%. [(125)I]halphaCGRP binding of hCLR/myc-hRAMP1-C72A was 13+/-3% of hCLR/myc-hRAMP1 and it was undetectable in hCLR/myc-hRAMP1-C40A-, -C57A- and -C104A-expressing cells. Maximal cAMP stimulation by halphaCGRP in hCLR/myc-hRAMP1-C40A- and -C72A-expressing cells was 14+/-1% and 33+/-2% of that of the hCLR/myc-hRAMP1 with comparable EC(50). But cAMP stimulation was abolished in cells expressing hCLR/myc-hRAMP1-C57A and -C104A. In conclusion, CGRP receptor function was not affected by the deletion of Cys(27) or the substitution of Cys(82) by Ala in hRAMP1, but it was impaired by the substitution of Cys(40), Cys(57), Cys(72) and Cys(104) by Ala. These four cysteines are required for the transport of hRAMP1 together with the CLR to the cell surface.  相似文献   

15.
We tested whether heterodimers comprised of calcitonin (CT) receptor lacking the 16-amino acid insert in intracellular domain 1 (CTR(I1-)) and receptor activity-modifying protein (RAMP) can function not only as calcitonin gene-related peptide (CGRP) receptors but also as adrenomedullin (AM) receptors. Whether transfected alone or together with RAMP, human (h)CTR(I1-) appeared mainly at the surface of HEK-293 cells. Expression of CTR(I1-) alone led to significant increases in cAMP in response to hCGRP or hAM, though both peptides remained about 100-fold less potent than hCT. However, the apparent potency of AM, like that of CGRP, approached that of CT when CTR(I1-) was co-expressed with RAMP. CGRP- or AM-evoked cAMP production was strongly inhibited by salmon CT-(8-32), a selective amylin receptor antagonist, but not by hCGRP-(8-37) or hAM-(22-52), antagonists of CGRP and AM receptors, respectively. Moreover, the inhibitory effects of CT-(8-32) were much stronger in cells co-expressing CTR(I1-) and RAMP than in cells expressing CTR(I1-) alone. Co-expression of CTR(I1-) with RAMP thus appears to produce functional CT-(8-32)-sensitive AM receptors.  相似文献   

16.
The calcitonin receptor-like receptor (CRLR), a class B GPCR, forms a heterodimer with receptor activity-modifying protein 2 (RAMP2), and serves as the adrenomedullin (AM) receptor to control neovascularization, while CRLR and RAMP1 form the calcitonin gene-related peptide (CGRP) receptor. Here, we report the crystal structures of the RAMP2 extracellular domain alone and in the complex with the CRLR extracellular domain. The CRLR-RAMP2 complex exhibits several intermolecular interactions that were not observed in the previously reported CRLR-RAMP1 complex, and thus the shape of the putative ligand-binding pocket of CRLR-RAMP2 is distinct from that of CRLR-RAMP1. The CRLR-RAMP2 interactions were confirmed for the full-length proteins on the cell surface by site-specific photo-crosslinking. Mutagenesis revealed that AM binding requires RAMP2 residues that are not conserved in RAMP1. Therefore, the differences in both the shapes and the key residues of the binding pocket are essential for the ligand specificity.  相似文献   

17.
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) are potent vasodilator peptides and serve as ligands for the G-protein coupled receptor (GPCR) calcitonin receptor-like receptor (CLR/Calcrl). Three GPCR accessory proteins called receptor activity-modifying proteins (RAMPs) modify the ligand binding affinity of the receptor such that the CLR/RAMP1 heterodimer preferably binds CGRP, while CLR/RAMP2 and CLR/RAMP3 have a stronger affinity for AM. Here we determine the contribution of each of the three RAMPs to blood pressure control in response to exogenous AM and CGRP by measuring the blood pressure of mice with genetic reduction or deletion of the receptor components. Thus, the cardiovascular response of Ramp1−/−, Ramp2+/−, Ramp3−/−, Ramp1−/−/Ramp3−/− double-knockout (dKO), and Calcrl+/− mice to AM and CGRP were compared to wildtype mice. While under anesthesia, Ramp1−/− male mice had significantly higher basal blood pressure than wildtype males; a difference which was not present in female mice. Additionally, anesthetized Ramp1−/−, Ramp3−/−, and Calcrl+/− male mice exhibited significantly higher basal blood pressure than females of the same genotype. The hypotensive response to intravenously injected AM was greatly attenuated in Ramp1−/− mice, and to a lesser extent in Ramp3−/− and Calcrl+/− mice. However, Ramp1−/−/Ramp3−/− dKO mice retained some hypotensive response to AM. These results suggest that the hypotensive effect of AM is primarily mediated through the CLR/RAMP1 heterodimer, but that AM signaling via CLR/RAMP2 and CLR/RAMP3 also contributes to some hypotensive action. On the other hand, CGRP’s hypotensive activity seems to be predominantly through the CLR/RAMP1 heterodimer. With this knowledge, therapeutic AM or CGRP peptides could be designed to cause less hypotension while maintaining canonical receptor-RAMP mediated signaling.  相似文献   

18.
Flahaut M  Pfister C  Rossier BC  Firsov D 《Biochemistry》2003,42(34):10333-10341
The calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-3 (RAMP3) can assemble into a CRLR/RAMP3 heterodimeric receptor that exhibits the characteristics of a high affinity adrenomedullin receptor. RAMP3 participates in adrenomedullin (AM) binding via its extracellular N-terminus characterized by the presence of six highly conserved cysteine residues and four N-glycosylation consensus sites. Here, we assessed the usage of these conserved residues in cotranslational modifications of RAMP3 and addressed their role in functional expression of the CRLR/RAMP3 receptor. Using a Xenopus oocyte expression system, we show that (i) RAMP3 is assembled with CRLR as a multiple N-glycosylated species in which two, three, or four consensus sites are used; (ii) elimination of all N-glycans in RAMP3 results in a significant inhibition of receptor [(125)I]AM binding and an increase in the EC(50) value for AM; (iii) several lines of indirect evidence indicate that each of the six cysteines is involved in disulfide bond formation; (iv) when all cysteines are mutated to serines, RAMP3 is N-glycosylated at all four consensus sites, suggesting that disulfide bond formation inhibits N-gylcosylation; and (v) elimination of all cysteines abolishes adrenomedullin binding and leads to a complete loss of receptor function. Our data demonstrate that cotranslational modifications of RAMP3 play a critical role in the function of the CRLR/RAMP3 adrenomedullin receptor.  相似文献   

19.
受体活性修饰蛋白研究进展   总被引:1,自引:0,他引:1  
受体活性修饰蛋白(receptor activity-modifying proteins,RAMPs)属于单跨膜蛋白家族,分三个结构域,RAMP的N端和跨膜区决定本身的功能和受体表型,胞内C端对于配体的信号传导和受体循环有重要作用。目前发现有三个成员:RAMP1、RAMP2和RAMP3。RAMPs通过改变G蛋白偶联受体的糖基化,作用于配体结合区域来调节受体表型。RAMP1与降钙素受体样受体(calcitonin receptor like receptor,CRLR)结合表现出降钙素基因相关肽(calcitonin gene-related peptide,CGRP)受体表型:RAMP2和RAMP3与CRLR结合则对肾上腺髓质素(adrenomedullin,AM)表现高亲和力,与降钙素受体(calcitonin receptor,CTR)结合则作为胰淀粉样酶(amylin,AMY)受体。由此可见,RAMPs不仅调节受体与配体结合,还影响细胞内的蛋白相互作用调节细胞内信号传导来影响细胞的增殖、迁移、分化等生物学特性。RAMPs还对心血管系统的病理生理有重要调节作用。  相似文献   

20.
Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET   总被引:2,自引:0,他引:2  
Héroux M  Breton B  Hogue M  Bouvier M 《Biochemistry》2007,46(23):7022-7033
Biochemical and functional evidence suggest that the calcitonin receptor-like receptor (CRLR) interacts with receptor activity-modifying protein-1 (RAMP1) to generate a calcitonin gene-related peptide (CGRP) receptor. Using bioluminescence resonance energy transfer (BRET), we investigated the oligomeric assembly of the CRLR-RAMP1 signaling complex in living cells. As for their wild-type counterparts, fusion proteins linking CRLR and RAMP1 to the energy donor Renilla luciferase (Rluc) and energy acceptor green fluorescent protein (GFP) reach the cell surface only upon coexpression of CRLR and RAMP1. Radioligand binding and cAMP production assays also confirmed that the fusion proteins retained normal functional properties. BRET titration experiments revealed that CRLR and RAMP1 associate selectively to form heterodimers. This association was preserved for a mutated RAMP1 that cannot reach the cell surface, even in the presence of CRLR, indicating that the deficient targeting resulted from the altered conformation of the complex rather than a lack of heterodimerization. BRET analysis also showed that, in addition to associate with one another, both CRLR and RAMP1 can form homodimers. The homodimerization of the coreceptor was further confirmed by the ability of RAMP1 to prevent cell surface targeting of a truncated RAMP1 that normally exhibits receptor-independent plasma membrane delivery. Although the role of such dimerization remains unknown, BRET experiments clearly demonstrated that CRLR can engage signaling partners, such as G proteins and beta-arrestin, following CGRP stimulation, only in the presence of RAMP1. In addition to shed new light on the CRLR-RAMP1 signaling complex, the BRET assays developed herein offer new biosensors for probing CGRP receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号