首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究探讨体外诱导鸡胚胎生殖细胞(EGCs)分化为神经干细胞(NSCs)的可能性.EGCs经类胚体(EB)阶段,以维生素A酸(RA)等进行诱导,在NSCs选择性培养基中筛培养扩增7 d,观察形态变化;采用RT-PCR法检测nestin基因表达及免疫细胞化学法检测nestin等NSCs特异性标志物,并对其扩增及分化能力进行观察.结果显示:EGCs经初级诱导,NSCs选择性培养基筛选培养7 d后,形成大量神经球样结构,可扩增传代;绝大部分神经球样结构呈nestin抗原阳性,表达nestin基因,且可分化为神经上皮样及少突胶质细胞.研究结果表明:RA等诱导的EGCs,经选择性培养基筛选培养可获得NSCs,有望为眼部神经变性疾病的治疗提供新的技术参考.  相似文献   

2.
Mouse embryonic stem (ES) cells can be differentiated into neural lineage cells, but the differentiation efficiency remains low. This study revealed two important factors that influence the neural differentiation efficiency of mouse ES cells: the first is the quality of embryonic bodies (EBs); good quality of EBs consistently originated from a suspension culture of 1 × 105 ES cells/ml serum-free chemically defined neural inducing medium and they exhibited a smooth round shape, with a dark central region surrounded by a light band. Such EBs are capable of attaining high neural differentiation efficiency. However, poor quality EBs originated from a suspension culture of 1 × 106 ES cells/ml serum-free chemically defined neural inducing medium and exhibited an irregular shape or adhered to the bottom of the dish; they displayed low neural differentiation efficiency. The second factor is the seeding density of EBs: a low seeding density (5 EBs/cm2) induced cells to differentiate into a more caudalized subtypes compared to the cells obtained from high seeding density (20 EBs/cm2). These findings provided fresh insight into the neural induction of mouse ES cells.  相似文献   

3.
Pluripotency of embryonic stem cells   总被引:2,自引:0,他引:2  
  相似文献   

4.
Abstract Neural precursors have been derived from human embryonic stem cells (hESC) using the bone morphogenetic protein antagonist noggin. These neural precursors can be further differentiated to produce neural cells that express central nervous system (CNS) markers. We have recently shown that naïve hESC can be directed to differentiate into peripheral sensory (PS) neuron-like cells and putative neural crest precursors by co-culturing with PA6 stromal cells. In the present study, we examine whether hESC-derived neural precursors (NPC) can differentiate into the peripheral nervous system, as well as CNS cells. As little as 1 week after co-culture with PA6 cells, cells with the molecular characteristics of PS neurons and neural crest are observed in the cultures. With increased time in culture, more PS-like neurons appear, in parallel with a reduction in the neural crest-like cells. These results provide the first evidence that neural precursors derived from hESC have the potential to develop into PS neurons-like as well as CNS-like neuronal cells. About 10% of the cells in NPC-PA6 co-cultures express PS neuron markers after 3 weeks, compared with <1% of hESC cultured on PA6. This enrichment for peripheral neurons makes this an attractive system for generation of peripheral neurons for pathophysiology study and drug development for diseases of the peripheral nervous system such as Familial Dysautonomia and varicella virus infection.  相似文献   

5.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

6.
Characterization of directed differentiation protocols is a prerequisite for understanding embryonic stem cell behavior, as they represent an important source for cell-based regenerative therapies. Studies have investigated the osteogenic potential of human embryonic stem cells (HESCs), building upon those using pre-osteoblastic cells, however no consensus exists as to whether differentiating HESCs behave in a similar manner to the traditionally used osteoblastic progenitors. Thus, the aim of the current investigation was to define the gene expression pattern of osteoblastic differentiating HESCs, treated with ascorbic acid phosphate, β-glycerophosphate and dexamethasone over a 25 day period. Characterization of the gene expression dynamics revealed a phasic pattern of bone-associated protein synthesis. Collagen type I and osteopontin were initially expressed in proliferating immature cells, whereas osterix was up-regulated at the end of active cellular proliferation. Subsequently, mineralization-associated proteins, bone sialoprotein and osteocalcin were detected. In light of this dynamic expression pattern, we concluded that two distinguishable phases occurred during osteogenic HESC differentiation; first, cellular proliferation and secretion of a pre-maturational matrix, and second the appearance of osteoprogenitors with characteristic extracellular matrix synthesis. Establishment of this model provided the foundation of a time-frame for the additional supplementation with growth factors, BMP2 and VEGF. BMP2 induced the expression of principle osteogenic factors, such as osterix, bone sialoprotein and osteocalcin, whereas VEGF had the converse effect on the gene expression pattern.  相似文献   

7.
Gao M  Yang J  Liu G  Wei R  Zhang L  Wang H  Wang G  Gao H  Chen G  Hong T 《Peptides》2012,34(2):373-379
Ghrelin is broadly expressed in myocardial tissues, where it exerts different functions. It also has been found to have a wide variety of biological functions on cell differentiation and tissue development. The aim of this study was to investigate the effect of ghrelin on human embryonic stem cell (hESC) differentiation in infarcted cardiac microenvironment. The hESCs grown on feeder layers expressed several pluripotential markers including alkaline phosphatase (AKP). Four weeks after transplantation into rat infarcted hearts, the hESCs and their progeny cells survived and formed intracardiac grafts were 54.7% and 19.6% respectively in ghrelin- and phosphate-buffered saline (PBS)-treated groups. Double immunostaining with anti-human Sox9 and anti-HNA or anti-human fetal liver kinase-1 (Flk1) and anti β-tubulin showed that the human grafts were in development. However, double positive stains were only found in the ghrelin-treated group. In addition, the hESC injection protocol was insufficient to restore heart function of the acute myocardial infarction model. Our study, therefore, provides a new insight of ghrelin on promoting hESC survival and differentiation in rat infarcted cardiac microenvironment. This may give a clue for therapy for myocardial infarction by hESCs or progeny cells.  相似文献   

8.
Specific neuronal differentiation of Embryonic Stem Cells (ESCs) depends on their capacity to interpret environmental cues. At present, it is not clear at which stage of differentiation ESCs become competent to produce multiple neuronal lineages in response to the niche of the embryonic brain. To unfold the developmental potential of ESC-derived precursors, we transplanted these cells into the embryonic midbrain explants, where neurogenesis occurs as in normal midbrain development. Using this experimental design, we show that the transition from ESCs to Embryoid Body (EB) precursors is necessary to differentiate into Lmx1a+/Ptx3+/TH+ dopaminergic neurons around the ventral midline of the midbrain. In addition, EB cells placed at other dorsal-ventral levels of the midbrain give rise to Nkx6.1+ red nucleus (RN) neurons, Nkx2.2+ ventral interneurons and Pax7+ dorsal neurons at the correct positions. Notably, differentiation of ESCs into Neural Precursor Cells (NPCs) prior to transplantation markedly reduces specification at the Lmx1a, Nkx6.1 and Pax7 expression domains, without affecting neuronal differentiation. Finally, exposure to Fgf8 and Shh in vitro promotes commitment of some ESC-derived NPCs to differentiate into putative Lmx1a+ dopaminergic neurons in the midbrain. Our data demonstrate intrinsic developmental potential differences among ESC-derived precursor populations.  相似文献   

9.
Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.  相似文献   

10.
Embryonic stem cells (ESCs) are permanent cell lines that can be maintained in a pluripotent, undifferentiated state. Appropriate environmental stimuli can cause them to differentiate into cell types of all three germ layers both in vitro and in vivo. Embryonic stem cells bear many opportunities for clinical applications in tissue engineering and regenerative medicine. Whereas most of our knowledge on the biology and technology of ESCs is derived from studies with mouse cells, large animal models mimicking important aspects of human anatomy, physiology, and pathology more closely than mouse models are urgently needed for studies evaluating the safety and efficacy of cell therapies. The dog is an excellent model for studying human diseases, and the availability of canine ESCs would open new possibilities for this model in biomedical research. In addition, canine ESCs could be useful for the development of cell-based approaches for the treatment of dogs. Here, we discuss the features of recently reported canine embryo-derived cells and their potential applications in basic and translational biomedical research.  相似文献   

11.
This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience.  相似文献   

12.
Though cardiac progenitor cells should be a suitable material for cardiac regeneration, efficient ways to induce cardiac progenitors from embryonic stem (ES) cells have not been established. Extending our systematic cardiovascular differentiation method of ES cells, here we show efficient and specific expansion of cardiomyocytes and highly cardiogenic progenitors from ES cells. An immunosuppressant, cyclosporin-A (CSA), showed a novel effect specifically acting on mesoderm cells to drastically increase cardiac progenitors as well as cardiomyocytes by 10-20 times. Approximately 200 cardiomyocytes could be induced from one mouse ES cell using this method. Expanded progenitors successfully integrated into scar tissue of infracted heart as cardiomyocytes after cell transplantation to rat myocardial infarction model. CSA elicited specific induction of cardiac lineage from mesoderm in a novel mesoderm-specific, NFAT independent fashion. This simple but efficient differentiation technology would be extended to induce pluripotent stem (iPS) cells and broadly contribute to cardiac regeneration.  相似文献   

13.
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments.  相似文献   

14.
Differentiation of embryonic stem cells is of great interest to developmental biology and regenerative medicine. This study investigated the effects of cytochalasin D (CD) on the distribution of actin filaments in mouse embryoid body (EB)-derived cells. Furthermore, CD was applied to chondrogenic medium to examine its chondrogenic effect. CD at a concentration of 1 microg/ml disrupted stress fibers in EB-derived cells. Actin filaments in treated cells reorganized into a peripheral pattern, and type II collagen was detected by immunocytochemistry. The expression of type II collagen, Sox9, and at a later time point, aggrecan was up-regulated after CD treatment. In the CD-treated cells, Oct4 and Sox2, representing undifferentiation, were down-regulated as well as Sox1, AFP, and CTN-1, representing ectoderm, endoderm, and cardiogenesis, respectively. In conclusion, CD treatment enhances chondrogenesis of EB-derived cells. Moreover, it promotes a more complete stem cell differentiation toward chondrogenesis, when cultured in chondrogenic medium.  相似文献   

15.
Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.  相似文献   

16.
Pluripotent embryonic stem cells (ESCs) spontaneously differentiate via embryo-like aggregates into cardiomyocytes. A thorough understanding of the molecular conditions in ESCs is necessary before other potential applications of these cells such as cell therapy can be materialized. We applied two dimensional electrophoresis to analyze and compare the proteome profiling of spontaneous mouse ESC-derived cardiomyocytes (ESC-DCs), undifferentiated mouse ESCs, and neonatal-derived cardiomyocytes (N-DCs). Ninety-five percent of the proteins detected on the ESC-DCs and N-DCs could be precisely paired with one other, whereas only twenty percent of the ESC proteins could be reliably matched with those on the ESC-DCs and N-DCSs, suggesting a striking similarity between them. Having identified sixty proteins in the said three cell types, we sought to provide possible explanations for their differential expression patterns and discuss their relevance to cell biology. This study provides a new insight into the gene expression pattern of differentiated cardiomyocytes and is further evidence for a close relation between ESC-DCs and N-DCSs.  相似文献   

17.
Embryonic stem (ES) cells have the ability to differentiate into all germ layers, holding great promise not only for a model of early embryonic development but also for a robust cell source for cell-replacement therapies and for drug screening. Embryoid body (EB) formation from ES cells is a common method for producing different cell lineages for further applications. However, conventional techniques such as hanging drop or static suspension culture are either inherently incapable of large scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB aggregation. For standardized mass EB production, a well defined scale-up platform is necessary. Recently, novel scenario methods of EB formation in hydrodynamic conditions created by bioreactor culture systems using stirred suspension systems (spinner flasks), rotating cell culture system and rotary orbital culture have allowed large-scale EB formation. Their use allows for continuous monitoring and control of the physical and chemical environment which is difficult to achieve by traditional methods. This review summarizes the current state of production of EBs derived from pluripotent cells in various culture systems. Furthermore, an overview of high quality EB formation strategies coupled with systems for in vitro differentiation into various cell types to be applied in cell replacement therapy is provided in this review. Recently, new insights in induced pluripotent stem (iPS) cell technology showed that differentiation and lineage commitment are not irreversible processes and this has opened new avenues in stem cell research. These cells are equivalent to ES cells in terms of both self-renewal and differentiation capacity. Hence, culture systems for expansion and differentiation of iPS cells can also apply methodologies developed with ES cells, although direct evidence of their use for iPS cells is still limited.  相似文献   

18.
The possibility of treating degenerative diseases by stem cell-based approaches is a promising therapeutical option. Among major concerns for the clinical application of stem cells, some derive from the possibility that stem cells may be rejected by the immune system as a consequence of histoincompatibility and that stem cells themselves may interfere with the normal functions of host immune response. Therefore, the immunogenicity and the immunomodulatory properties of stem cells must be carefully addressed. Although these properties are common features of different stem cell types, some peculiarities can be recognized and characterized for their proper clinical use.  相似文献   

19.
Embryonic stem (ES) cells are pluripotent cells capable of differentiating into cell lineages derived from all primary germ layers including neural cells. In this study we describe an efficient method for differentiating rhesus monkey ES cells to neural lineages and the subsequent isolation of an enriched population of Nestin and Musashi positive neural progenitor (NP) cells. Upon differentiation, these cells exhibit electrophysiological characteristics resembling cultured primary neurons. Embryoid bodies (EBs) were formed in ES growth medium supplemented with 50% MEDII. After 7 days in suspension culture, EBs were transferred to adherent culture and either differentiated in serum containing medium or expanded in serum free medium. Immunocytochemistry on differentiating cells derived from EBs revealed large networks of MAP-2 and NF200 positive neurons. DAPI staining showed that the center of the MEDII-treated EBs was filled with rosettes. NPs isolated from adherent EB cultures expanded in serum free medium were passaged and maintained in an undifferentiated state by culture in serum free N2 with 50% MEDII and bFGF. Differentiating neurons derived from NPs fired action potentials in response to depolarizing current injection and expressed functional ionotropic receptors for the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). NPs derived in this way could serve as models for cellular replacement therapy in primate models of neurodegenerative disease, a source of neural cells for toxicity and drug testing, and as a model of the developing primate nervous system.  相似文献   

20.
Human embryonic stem cells (HESC) are pluripotent stem cells isolated from the inner cell mass of human blastocysts. With the first successful culturing of HESC, a new era of regenerative medicine was born. HESC can differentiate into almost any cell type and, in the future, might replace solid organ transplantation and even be used to treat progressive degenerative diseases such as Parkinson’s disease. Although this sounds promising, certain obstacles remain with regard to their clinical use, such as culturing HESC under well-defined conditions without exposure to animal proteins, the risk of teratoma development and finally the avoidance of immune rejection. In this review, we discuss the immunological properties of HESC and various strategic solutions to circumvent immune rejection, such as stem cell banking, somatic cell nuclear transfer and the induction of tolerance by co-stimulation blockade and mixed chimerism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号