首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1–Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1–Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA.  相似文献   

2.
LIS1 and NDEL1 are known to be essential for the activity of cytoplasmic dynein in living cells. We previously reported that LIS1 and NDEL1 directly regulated the motility of cytoplasmic dynein in an in vitro motility assay. LIS1 suppressed dynein motility and inhibited the translocation of microtubules (MTs), while NDEL1 dissociated dynein from MTs and restored dynein motility following suppression by LIS1. However, the molecular mechanisms and detailed interactions of dynein, LIS1, and NDEL1 remain unknown. In this study, we dissected the regulatory effects of LIS1 and NDEL1 on dynein motility using full-length or truncated recombinant fragments of LIS1 or NDEL1. The C-terminal fragment of NDEL1 dissociated dynein from MTs, whereas its N-terminal fragment restored dynein motility following suppression by LIS1, demonstrating that the two functions of NDEL1 localize to different parts of the NDEL1 molecule, and that restoration from LIS1 suppression is caused by the binding of NDEL1 to LIS1, rather than to dynein. The truncated monomeric form of LIS1 had little effect on dynein motility, but an artificial dimer of truncated LIS1 suppressed dynein motility, which was restored by the N-terminal fragment of NDEL1. This suggests that LIS1 dimerization is essential for its regulatory function. These results shed light on the molecular interactions between dynein, LIS1, and NDEL1, and the mechanisms of cytoplasmic dynein regulation.  相似文献   

3.
LIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein. We demonstrate that LIS1, cytoplasmic dynein and MT fragments co-migrate anterogradely. When LIS1 function was suppressed by a blocking antibody, anterograde movement of cytoplasmic dynein was severely impaired. Immunoprecipitation assay indicated that cytoplasmic dynein forms a complex with LIS1, tubulins and kinesin-1. In contrast, immunoabsorption of LIS1 resulted in disappearance of co-precipitated tubulins and kinesin. Thus, we propose a novel model of the regulation of cytoplasmic dynein by LIS1, in which LIS1 mediates anterograde transport of cytoplasmic dynein to the plus end of cytoskeletal MTs as a dynein-LIS1 complex on transportable MTs, which is a possibility supported by our data.  相似文献   

4.
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8–167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly.  相似文献   

5.
Regulation of cytoplasmic dynein and microtubule dynamics is crucial for both mitotic cell division and neuronal migration. NDEL1 was identified as a protein interacting with LIS1, the protein product of a gene mutated in the lissencephaly. To elucidate NDEL1 function in vivo, we generated null and hypomorphic alleles of Ndel1 in mice by targeted gene disruption. Ndel1(-/-) mice were embryonic lethal at the peri-implantation stage like null mutants of Lis1 and cytoplasmic dynein heavy chain. In addition, Ndel1(-/-) blastocysts failed to grow in culture and exhibited a cell proliferation defect in inner cell mass. Although Ndel1(+/-) mice displayed no obvious phenotypes, further reduction of NDEL1 by making null/hypomorph compound heterozygotes (Ndel1(cko/-)) resulted in histological defects consistent with mild neuronal migration defects. Double Lis1(cko/+)-Ndel1(+/-) mice or Lis1(+/-)-Ndel1(+/-) mice displayed more severe neuronal migration defects than Lis1(cko/+)-Ndel1(+/)(+) mice or Lis1(+/-)-Ndel1(+/+) mice, respectively. We demonstrated distinct abnormalities in microtubule organization and similar defects in the distribution of beta-COP-positive vesicles (to assess dynein function) between Ndel1 or Lis1-null MEFs, as well as similar neuronal migration defects in Ndel1- or Lis1-null granule cells. Rescue of these defects in mouse embryonic fibroblasts and granule cells by overexpressing LIS1, NDEL1, or NDE1 suggest that NDEL1, LIS1, and NDE1 act in a common pathway to regulate dynein but each has distinct roles in the regulation of microtubule organization and neuronal migration.  相似文献   

6.
The mediation of cAMP effects by specific pools of protein kinase A (PKA) targeted to distinct subcellular domains raises the question of how inactivation of the cAMP signal is achieved locally and whether similar targeting of phosphodiesterases (PDEs) to sites of cAMP/PKA action could be observed. Here, we demonstrate that Sertoli cells of the testis contain an insoluble PDE4D3 isoform, which is shown by immunofluorescence to target to centrosomes. Staining of PDE4D and PKA shows co-localization of PDE4D with PKA-RIIalpha and RIIbeta in the centrosomal region. Co-precipitation of RII subunits and PDE4D3 from cytoskeletal extracts indicates a physical association of the two proteins. Distribution of PDE4D overlaps with that of the centrosomal PKA-anchoring protein, AKAP450, and AKAP450, PDE4D3, and PKA-RIIalpha co-immunoprecipitate. Finally, both PDE4D3 and PKA co-precipitate with a soluble fragment of AKAP450 encompassing amino acids 1710 to 2872 when co-expressed in 293T cells. Thus, a centrosomal complex that includes PDE4D and PKA constitutes a novel signaling unit that may provide accurate spatio-temporal modulation of cAMP signals.  相似文献   

7.
The spatiotemporal regulation of cAMP can generate microdomains just beneath the plasma membrane where cAMP increases are larger and more dynamic than those seen globally. Real-time measurements of cAMP using mutant cyclic nucleotide-gated ion channel biosensors, pharmacological tools and RNA interference (RNAi) were employed to demonstrate a subplasmalemmal cAMP signaling module in living cells. Transient cAMP increases were observed upon stimulation of HEK293 cells with prostaglandin E1. However, pretreatment with selective inhibitors of type 4 phosphodiesterases (PDE4), protein kinase A (PKA) or PKA/A-kinase anchoring protein (AKAP) interaction blocked an immediate return of subplasmalemmal cAMP to basal levels. Knockdown of specific membrane-associated AKAPs using RNAi identified gravin (AKAP250) as the central organizer of the PDE4 complex. Co-immunoprecipitation confirmed that gravin maintains a signaling complex that includes PKA and PDE4D. We propose that gravin-associated PDE4D isoforms provide a means to rapidly terminate subplasmalemmal cAMP signals with concomitant effects on localized ion channels or enzyme activities.  相似文献   

8.
精神分裂症断裂基因1(disrupted in schizophrenia 1,DISC1)是多种精神疾病中的一个关键的遗传学危险因素。DISC1能够与磷酸二酯酶4(phosphodiesterase 4,PDE4)相互作用形成复合物,这可能是一些精神疾病的关键分子机制。PDE4能够水解cAMP,DISC1可通过调节PDE4的活性进而发挥调节cAMP在细胞内的信号转导功能。已有研究证实,在一些精神疾病患者中,DISC1和PDE4基因表达均发生了变化。DISC1突变导致其表达产物与PDE4的相互作用减弱,结果之一是降低脑PDE4的活性。DISC1与PDE4之间的相互作用的改变可能是精神分裂症及抑郁症等疾病症状产生的基础。  相似文献   

9.
10.
Lissencephaly is a devastating neurological disorder due to defective neuronal migration. LIS1 (or PAFAH1B1), the gene mutated in lissencephaly patients and its binding protein NDEL1 were found to regulate cytoplasmic dynein function and localization. LIS1 and NDEL1 also play a pivotal role on a microtubule regulation and determination of cell polarity. For example, LIS1 is required for the precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. On the other hand, NDEL1 is essential for mitotic entry as an effector molecule of Aurora-A kinase. In addition, an atypical protein kinase C (aPKC)-Aurora-A-NDEL1 pathway is critical for the regulation of microtubule organization during neurite extension. These findings suggest that physiological functions of LIS1 and NDEL1 in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. In turn, cell cycle regulators may exert other functions during neurogenesis in a direct or an indirect fashion. Thus far, only a handful of cell cycle regulators have been shown to play physiological cell-cycle-independent roles in neurons. Further identification of such proteins and elucidation of their underlying mechanisms of action will likely reveal novel concepts and/or patterns that provide a clear link between their seemingly distinct cell cycle and neuronal functions.  相似文献   

11.
By activating two distinct classes of effector enzymes, namely Protein Kinases A [PKA] or Exchange Proteins Activated by cAMP [EPAC], the ubiquitous second messenger cAMP selectively coordinates numerous events simultaneously in virtually all cells. Studies focused on dissecting the manner by which cAMP simultaneously regulates multiple cellular events have shown that cAMP activates its effectors non-uniformly in cells and that this localized cAMP-mediated signalling is made possible, at least in part, by anchoring of cAMP effectors to selected subcellular structures. In the work described here, we report that HEK293T cells [“293T”] contain several PKA- and EPAC1-based signalling complexes. Interestingly, our data do not identify signalling complexes in which both PKA and EPAC are each present but rather are consistent with the idea that these two effectors operate in distinct complexes in these cells. Similarly, we report that while individual PKA- or EPAC-containing complexes can contain either phosphodiesterase 3B, [PDE3B] or phosphodiesterase 4D [PDE4D], they do not contain both these phosphodiesterases. Indeed, although PDE4D enzymes were identified in both PKA- and EPAC-based complexes, PDE3B was largely identified in EPAC-based complexes. Using a combination of approaches, we identified that integration of PDE3B into EPAC-based complexes occurred through its amino terminal fragment [PDE3B(AT)]. Consistent with the idea that integration of PDE3B within EPAC-based complexes was dynamic and regulated PDE3 inhibitor-mediated effects on cellular functions, expression of PDE3B(AT) competed with endogenous PDE3B for integration into EPAC-based complexes and antagonized PDE3 inhibitor-based cell adhesion. Our data support the concept that cells can contain several non-overlapping PKA- and EPAC-based signalling complexes and that these complexes may also represent sites within cells were the effects of family-selective PDE inhibitors could be integrated to affect cell functions, including adhesion.  相似文献   

12.
DISC1 (Disrupted in schizophrenia-1) plays essential roles in neuronal proliferation, neuronal migration and axon guidance and has been implicated in schizophrenia and related psychiatric disorders. DISC1 forms a functional complex with nuclear distribution element-like protein-1 (NDEL1), a key component that regulates microtubule organization during cell division and neuronal migration. DISC1 polymorphisms at the binding interface of DISC1-NDEL1 complex have been implicated in schizophrenia. However, it is unknown how schizophrenia risk polymorphisms perturb its interaction with NDEL1 and how they change the inherent biochemical properties of DISC1. Here, we characterize the oligomerization and binding property of DISC1 and its natural schizophrenia risk variant, S704C. Our results show that DISC1 forms octamers via dimers as building blocks and directly interacts with tetramers of NDEL1. The schizophrenia risk variant S704C affects the formation of octamers of DISC1 and exhibits higher-order self-oligomerization. However, the observed formation of new oligomeric species did not influence its binding with NDEL1. These results suggest that the improper oligomeric assembly of DISC1-S704C may underlie the observed phenotypic variation due to the polymorphism.  相似文献   

13.
Spatiotemporal regulation of protein kinase A (PKA) activity involves the manipulation of compartmentalized cAMP pools. Now we demonstrate that the muscle-selective A-kinase anchoring protein, mAKAP, maintains a cAMP signaling module, including PKA and the rolipram-inhibited cAMP-specific phosphodiesterase (PDE4D3) in heart tissues. Functional analyses indicate that tonic PDE4D3 activity reduces the activity of the anchored PKA holoenzyme, whereas kinase activation stimulates mAKAP-associated phosphodiesterase activity. Disruption of PKA- mAKAP interaction prevents this enhancement of PDE4D3 activity, suggesting that the proximity of both enzymes in the mAKAP signaling complex forms a negative feedback loop to restore basal cAMP levels.  相似文献   

14.
15.
It is generally assumed that antagonists of Gs‐coupled receptors do not activate cAMP signalling, because they do not stimulate cAMP production via Gs‐protein/adenylyl cyclase activation. Here, we report a new signalling pathway whereby antagonists of β1‐adrenergic receptors (β1ARs) increase cAMP levels locally without stimulating cAMP production directly. Binding of antagonists causes dissociation of a preformed complex between β1ARs and Type‐4 cyclic nucleotide phosphodiesterases (PDE4s). This reduces the local concentration of cAMP‐hydrolytic activity, thereby increasing submembrane cAMP and PKA activity. Our study identifies receptor/PDE4 complex dissociation as a novel mechanism of antagonist action that contributes to the pharmacological properties of β1AR antagonists and might be shared by other receptor subtypes.  相似文献   

16.
17.
cAMP and protein kinase A (PKA) activation represents a key signaling mechanism upon β-adrenergic stimulation under stress. Both β1- and β2-adrenoreceptor (ARs) subtypes induce cAMP accumulation, yet play distinct roles in cardiac contraction and myocyte apoptosis. Differences in controlling cAMP/PKA activities through the assembly of complexes between the receptors and cAMP-specific phosphodiesterases contribute to the distinct biological outcomes. Here, we demonstrate that β2ARs form signaling complexes with a set of PDE4D isoforms expressed in cardiac myocytes. PDE4D9 and PDE4D8 bind to the β2AR at resting conditions; however, agonist stimulation induces dissociation of PDE4D9 from the receptor but recruitment of PDE4D8 to the receptor. Agonist stimulation also induces recruitment of PDE4D5 to the β2AR. Moreover, the receptor-associated PDE4D isoforms play distinct roles in controlling cAMP activities and regulating the PKA phosphorylation of the receptor and myocyte contraction rate responses. Knockdown of PDE4D9 with short hairpin RNA enhances the β2AR-induced cAMP signaling, whereas knockdown of PDE4D8 only slightly prolongs the receptor-induced cAMP signaling in myocytes. Inhibition of PDE4D9 and PDE4D5 enhances the base-line levels of contraction rates, whereas inhibition of PDE4D9 and PDE4D8 enhances the maximal contraction rate increases upon activation of β2AR. Our data underscore the complex regulation of intracellular cAMP by β2AR-associated phosphodiesterase enzymes to enforce the specificity of the receptor signaling for physiological responses.  相似文献   

18.
Multiple families of cyclic nucleotide phosphodiesterases (PDE) have been described, and the regulated expression of these genes in cells is complex. Although cAMP is known to control the expression of certain PDE in cells, presumably reflecting a system of feedback on cAMP signaling, relatively little is known about the influence of non-cAMP signaling systems on PDE expression. In this study, we describe a novel mechanism by which activators of the protein kinase C (PKC)-Raf-MEK-ERK cascade regulate phosphodiesterase 4D (PDE4D) expression in vascular smooth muscle cells (VSMC) and assess the functional consequences of this effect. Whereas a prolonged elevation of cAMP in VSMC resulted in a protein kinase A (PKA)-dependent induction of expression of two PDE4D variants (PDE4D1 and PDE4D2), simultaneous activation of both the cAMP-PKA and PKC-Raf-MEK-ERK signaling cascades blunted this cAMP-mediated increase in PDE4D expression. By using biochemical, molecular biological, and pharmacological approaches, we demonstrate that this PDE4D-selective effect of activators of the PKC-Raf-MEK-ERK cascade was mediated through a mechanism involving altered PDE4D mRNA stability and markedly attenuated the cAMP-mediated desensitization that results from prolonged activation of the cAMP signaling system in cells. The data are presented in the context of activators of the PKC-Raf-MEK-ERK cascade having both short and long term effects on PDE4D activity and expression in cells that may influence cAMP signaling.  相似文献   

19.
Mitotic spindle orientation and plane of cleavage in mammals is a determinant of whether division yields progenitor expansion and/or birth of new neurons during radial glial progenitor cell (RGPC) neurogenesis, but its role earlier in neuroepithelial stem cells is poorly understood. Here we report that Lis1 is essential for precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. Controlled gene deletion of Lis1 in vivo in neuroepithelial stem cells, where cleavage is uniformly vertical and symmetrical, provokes rapid apoptosis of those cells, while radial glial progenitors are less affected. Impaired cortical microtubule capture via loss of cortical dynein causes astral and cortical microtubules to be greatly reduced in Lis1-deficient cells. Increased expression of the LIS/dynein binding partner NDEL1 restores cortical microtubule and dynein localization in Lis1-deficient cells. Thus, control of symmetric division, essential for neuroepithelial stem cell proliferation, is mediated through spindle orientation determined via LIS1/NDEL1/dynein-mediated cortical microtubule capture.  相似文献   

20.
Human pulmonary artery smooth muscle cells (hPASM cells) express PDE4A10, PDE4A11, PDE4B2, PDE4C and PDE4D5 isoforms. Hypoxia causes a transient up-regulation of PDE4B2 that reaches a maximum after 7 days and sustained up-regulation of PDE4A10/11 and PDE4D5 over 14 days in hypoxia. Seven days in hypoxia increases both intracellular cAMP levels, protein kinase A (PKA) activity and activated, phosphorylated extracellular signal regulated kinase (pERK) but does not alter either PKA isoform expression or total cAMP phosphodiesterase-4 (PDE4) activity or cAMP phosphodiesterase-3 (PDE3) activity. Both the cyclooxygenase inhibitor, indomethacin and the ERK inhibitors, UO126 and PD980589 reverse the hypoxia-induced increase in intracellular cAMP levels back to those seen in normoxic hPASM cells. Challenge of normoxic hPASM cells with prostaglandin E(2) (PGE(2)) elevates cAMP to levels comparable to those seen in hypoxic cells but fails to increase intracellular cAMP levels in hypoxic hPASM cells. The adenylyl cyclase activator, forskolin increases cAMP levels in both normoxic and hypoxic hPASM cells to comparable elevated levels. Challenge of hypoxic hPASM cells with indomethacin attenuates total PDE4 activity whilst challenge with UO126 increases total PDE4 activity. We propose that the hypoxia-induced activation of ERK initiates a phospholipase A(2)/COX-driven autocrine effect whereupon PGE(2) is generated, causing the activation of adenylyl cyclase and increase in intracellular cAMP. Despite the hypoxia-induced increases in the expression of PDE4A10/11, PDE4B2 and PDE4D5 and activation of certain of these long PDE4 isoforms through PKA phosphorylation, we suggest that the failure to see any overall increase in PDE4 activity is due to ERK-mediated phosphorylation and inhibition of particular PDE4 long isoforms. Such hypoxia-induced increase in expression of PDE4 isoforms known to interact with certain signalling scaffold proteins may result in alterations in compartmentalised cAMP signalling. The hypoxia-induced increase in cAMP may represent a compensatory protective mechanism against hypoxia-induced mitogens such as endothelin-1 and serotonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号