首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel class of insulin-sensitizing agents, the thiazolidinedines (TZDs), has proven effective in the treatment of type 2 diabetes. These compounds, as well as a subclass of non-TZD insulin-sensitizing agents, have been shown to be peroxisome proliferator-activated receptor (PPAR) gamma agonists. PPARgamma plays a critical role in adipogenesis and PPARgamma agonists have been shown to induce adipocyte differentiation. Here, PPARgamma ligand activity has been assessed in murine 3T3-L1 cells, a commonly used in vitro model of adipogenesis, by measuring their ability to induce adipocyte fatty acid-binding protein (aP2) mRNA expression. In order to perform this task, we have developed a novel, multiwell assay for the direct detection of aP2 mRNA in cell lysates that is based on hybridization of mRNA to target-specific oligonucleotides. These oligonucleotide probes are conjugated to enzymes that efficiently process unique chemical substrates into robust fluorescent products. Ribosomal protein 36B4 mRNA, a gene whose expression is unaffected by adipogenesis, serves as the control in the assay. Two assay formats have been developed, a single analyte assay in which aP2 and 36B4 mRNA expression are assayed in separate lysate aliquots and a dual analyte assay which can measure aP2 and 36B4 mRNA simultaneously. Both forms of the assay have been used to quantify attomole levels of aP2 and 36B4 mRNAs in differentiating 3T3-L1 preadipocytes treated with PPARgamma agonists. The potencies of PPARgamma agonists determined by this novel methodology showed good correlation with those derived from aP2 mRNA slot-blot analysis and PPARgamma transactivation assays. We conclude that the aP2 single and dual analyte assays both provide specific and sensitive measurements of endogenous aP2 mRNA levels that can be used to assess the activity of PPARgamma ligands in 3T3-L1 cells. Since the assay obviates the need for RNA isolation and is performed in an automatable multiwell format, it can serve as a high-throughput, cell-based screen for the identification and characterization of PPARgamma modulators.  相似文献   

2.
3.
4.
5.
6.
Shang W  Yang Y  Jiang B  Jin H  Zhou L  Liu S  Chen M 《Life sciences》2007,80(7):618-625
Evidence has accumulated that ginseng and its main active constituents, ginsenosides, possess anti-diabetic and insulin-sensitizing properties which may be partly realized by regulating adipocyte development and functions. In the present study, we explored the effect of ginsenoside Rb(1), the most abundant ginsenoside in ginseng root, on adipogenesis of 3T3-L1 cells. We found that with standard differentiation inducers, ginsenoside Rb(1) facilitated adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner; 10 microM Rb(1) increased lipid accumulation by about 56%. Treatment of differentiating adipocytes with 10 microM Rb(1) increased the expression of mRNA and protein of PPARgamma(2) and C/EBPalpha, as well as mRNA of ap2, one of their target genes. After the treatment of differentiating adipocytes with Rb(1), basal and insulin-mediated glucose uptake was significantly augmented, accompanied by the up-regulation of mRNA and protein level of GLUT4, but not of GLUT1. In addition, ginsenoside Rb(1) also inhibited the proliferation of preconfluent 3T3-L1 preadipocytes. Our data indicate that anti-diabetic and insulin-sensitizing activities of ginsenosides, at least in part, are involved in the enhancing effect on PPARgamma2 and C/EBPalpha expression, hence promoting adipogenesis.  相似文献   

7.
Emodin, one of the main active components in the root and rhizome of Rheum palmatum L, promoted the conversion of 3T3-L1 fibroblasts to adipocytes, as evidenced by increased glycerol-3-phosphate dehydrogenase (GPDH) activity and the expression of adipocyte aP2 mRNA, as well as accelerated triacylglycerol (TG) accumulation, which was associated with increased mRNA expression levels of both C/EBPalpha and PPARgamma2. By using surface plasmon resonance (SPR) experiment, it was showed that emodin exhibited a very high binding affinity to PPARgamma. In differentiated 3T3-L1 adipocytes, emodin induced a time- and dose-dependent increase in glucose uptake as well as GLUT1 and GLUT4 mRNA expression, and the rate of uptake was partly abrogated by wortmannin (phosphoinositide 3-kinase inhibitor). Meanwhile, insulin-stimulated glucose uptake was increased significantly after treatment with low doses of emodin, and the degree of potentiation was decreased thereafter in response to increasing concentrations. Furthermore, 50 microM emodin profoundly inhibited insulin-stimulated glucose uptake by 25%. These data suggest a new role for emodin as a PPARgamma agonist in 3T3-L1 cells. Besides, it is possible that emodin may also possess other properties contribute to glucose utilization in the adipocytes.  相似文献   

8.
9.
10.
11.
Rehmannia glutinosa, a Traditional Chinese Medicine (TCM), has been used to increase physical strength. Here, we report that Rehmannia glutinosa extract (RE) inhibits adipocyte differentiation and adipogenesis. RE impairs differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. At the molecular level, treatment with RE inhibits expression of the key adipocyte differentiation regulator C/EBPβ, as well as C/EBPα and the terminal marker protein 422/aP2, during differentiation of preadipocytes into adipocytes. Additionally, RE inhibits the mitotic clonal expansion (MCE) process of adipocyte differentiation, and RE prevents localization of C/EBPβ to the centromeres. RE also prevents high fat diet (HFD) induced weight gain and adiposity in rats. Taken together, our results indicate that Rehmannia glutinosa extract inhibits preadipocyte differentiation and adipogenesis in cultured cells and in rodent models of obesity.  相似文献   

12.
Vanadium is a well known anti-diabetic agent which mimics most of the actions of insulin on mature adipocytes. We report here the effect of vanadium on proliferation and differentiation of 3T3-L1 preadipocytes. Like insulin, vanadium treatment leads to increased proliferation as evidenced by H3thymidine uptake studies and differentiation of 3T3-L1 cells into adipocytes as evidenced by oil-red-O staining. Adipogenic potential of vanadium can be attributed to CREB activation, as documented by phospho-CREB antibody staining. This adipogenic potential is of significance in an in vivo scenario as the new adipocytes are likely to be insulin sensitive as against resistant existing mature adipocytes and thus indirectly may help in reduction of insulin resistance. Till today decrease in insulin resistance by vanadium treatment has been mainly attributed to its potential to inhibit PTP-1B, however the present study opens a new dimension in vanadium treatment for diabetes due to its novel role in adipogenesis.  相似文献   

13.
《Phytomedicine》2014,21(2):109-117
Rooibos (Aspalathus linearis) contains a rich complement of polyphenols, including flavonoids, considered to be largely responsible for its health promoting effects, including combatting obesity. The purpose of this study was to examine the effect of fermented rooibos hot water soluble solids on in vitro adipocyte differentiation by using differentiating 3T3-L1 adipocytes. Hot water soluble solids were obtained when preparing an infusion of fermented rooibos at “cup-of-tea” strength. The major phenolic compounds (>5 mg/g) were isoorientin, orientin, quercetin-3-O-robinobioside and enolic phenylpyruvic acid-2-O-β-d-glucoside. Treatment of 3T3-L1 adipocytes with 10 μg/ml and 100 μg/ml of the rooibos soluble solids inhibited intracellular lipid accumulation by 22% (p < 0.01) and 15% (p < 0.05), respectively. Inhibition of adipogenesis was accompanied by decreased messenger RNA (mRNA) expression of PPARγ, PPARα, SREBF1 and FASN. Western blot analysis exhibited decreased PPARα, SREBF1 and AMPK protein expression. Impeded glycerol release into the culture medium was observed after rooibos treatment. None of the concentrations of rooibos hot water soluble solids was cytotoxic, in terms of ATP content. Interestingly, the higher concentration of hot water soluble solids increased ATP concentrations which were associated with increased basal glucose uptake. Decreased leptin secretion was observed after rooibos treatment. Our data show that hot water soluble solids from fermented rooibos inhibit adipogenesis and affect adipocyte metabolism, suggesting its potential in preventing obesity.  相似文献   

14.
15.
16.
17.
18.
In the nucleus HuR binds to mRNAs containing adenylate-uridylate rich elements in the 3′-untranslated region. HuR may influence expression of its ligand mRNA through regulation of polyadenylation, translocation of the message to the cytosol, stabilization of the mRNA and/or altering its translational efficiency. Suppression of HuR using siRNA resulted in an attenuation of the 3T3-L1 differentiation program, consistent with HuR control of the expression of mRNA ligand(s) critical to the differentiation process. In the present study, we begin to identify mRNA ligands of HuR whose regulated expression is necessary for adipogenesis.  相似文献   

19.
Wnt/beta-catenin signaling has been implicated in repressing adipogenesis. Several lines of evidence show that the possible mechanism is blockade of PPARgamma induction. However, the precise mechanisms remain to be elucidated. In this study, we demonstrated that Wnt3a conditioned medium suppresses C/EBPbeta/delta-induced adipogenesis of 3T3-L1 cells by inhibiting PPARgamma induction. In addition, the mutual activation of PPARgamma and C/EBPalpha was also repressed in the presence of Wnt3a. To further investigate the role of the canonical Wnt pathway in adipogenesis, we used mouse embryonic fibroblasts (MEFs) isolated from Lrp6-deficient embryos. Contrary to wild-type MEFs, Lrp6-deficient MEFs showed spontaneous adipogenesis and escaped the suppressive effect of exogenous Wnt3a. These findings suggest a critical role of Wnt/Lrp6/beta-catenin signaling in adipogenesis and cell fate decision of mesenchymal stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号