首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipidosis induced by drugs with a cationic amphiphilic structure is a generalized condition in humans and animals that is characterized by an intracellular accumulation of phospholipids and the concurrent development of concentric lamellar bodies. The primary mechanism responsible for the development of phospholipidosis is an inhibition of lysosomal phospholipase activity by the drugs. While the biochemical and ultrastructural features of the condition have been well characterized, much less effort has been directed toward understanding whether the condition has adverse effects on the organism. While there are a few cationic amphiphilic drugs that have been reported to cause phospholipidosis in humans, the principal concern with this condition is in the pharmaceutical industry during preclinical testing. While this class of drugs should technically be referred to as cationic lipophilic, the term cationic amphiphilic is widely used and recognized in this field, and for this reason, the terminology cationic amphiphilic drugs (CADs) will be employed in this Minireview. The aim of this Minireview is to provide an evaluation of the state of knowledge on the functional consequences of CAD-induced phospholipidosis.  相似文献   

2.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) are involved in the targeting of newly synthesized lysosomal enzymes and only MPR 300 also participates in the endocytosis of various exogenous ligands. The present study describes for the first time the MPR 300 dependent pathway of lysosomal enzyme sorting in the Biomphalaria glabrata embryonic (Bge) cells. Lysosomal enzymes (arylsulfatase A, β-hexosaminidase and α-fucosidase) were identified by their enzymatic activities and by immunoprecipitation with specific antisera. Exposure of Bge cells to unio MPR 300 antiserum resulted in a dramatic loss of MPR 300 protein with a shortened half life of ∼20 min as compared to control cells exposed to preimmune serum in which the half life of MPR 300 was of ∼13 h. Loss of receptor proteins resulted in a significant misrouting of newly synthesized lysosomal enzymes and their secretion in cell culture medium as demonstrated by immunoprecipitation. The ability of Bge cells to uptake and internalize labeled arylsulfatase A, β-hexosaminidase and α-fucosidase enzymes contained in cell secretion products also indicated the role of B. glabrata MPR 300 (CIMPR) protein in internalization and targeting of lysosomal enzymes. M6P dependent binding of lysosomal enzymes to MPR 300 was shown by confocal microscopy and coimmunoprecipitation experiments.  相似文献   

3.
In vertebrates, mannose 6-phosphate receptors [MPR300 (Mr 300 kDa) and MPR46 (Mr 46 kDa)] are highly conserved transmembrane glycoproteins that mediate transport of lysosomal enzymes to lysosomes. Our studies have revealed the appearance of these putative receptors in invertebrates such as the molluscs and deuterostomes. Starfish tissue extracts contain several lysosomal enzyme activities and here we describe the affinity purification of α-fucosidase. The purified enzyme is a glycoprotein that exhibited a molecular mass of ∼56 kDa in SDS-PAGE under reducing conditions. It has also cross-reacted with an antiserum to the mollusc enzyme suggesting antigenic similarities among the two invertebrate enzymes. LC–MS/MS analysis of the proteolytic peptides of the purified enzyme in combination with de novo sequencing allowed us to do partial amino acid sequence determination of the enzyme. These data suggest that this invertebrate enzyme is homologous to the known mammalian enzyme. The purified enzyme exhibited a mannose 6-phosphate dependent interaction with the immobilized starfish MPR300 protein. Our results demonstrate that the lysosomal enzyme targeting pathway is conserved even among the invertebrates.  相似文献   

4.
Mouse embryonic fibroblasts that are deficient in the two mannose 6- phosphate receptors (MPRs) MPR 46 and MPR 300 missort the majority (> or = 85%) of soluble lysosomal proteins into the medium. Human MPR 46 and MPR 300 were expressed in these cells to test whether overexpression of a single type of MPR can restore transport of lysosomal proteins to lysosomes. Only a partial correction of the missorting was observed after overexpression of MPR 46. Even at MPR 46 levels that are five times higher than the wild-type level, more than one third of the newly synthesized lysosomal proteins accumulates in the secretions. Two-fold overexpression of MPR 300 completely corrects the missorting of lysosomal enzymes. However, at least one fourth of the lysosomal enzymes are transported along a secretion-recapture pathway that is sensitive to mannose 6-phosphate in medium. In control fibroblasts that express both types of MPR, the secretion-recapture pathway is of minor importance. These results imply that neither overexpression of MPR 46 nor MPR 300 is sufficient for targeting of lysosomal proteins along intracellular routes.  相似文献   

5.
Biogenesis of lysosomes depends in mammalian cells on the specific recognition and targeting of mannose 6-phosphate-containing lysosomal enzymes by two mannose 6-phosphate receptors (MPR46, MPR300), key components of the extensively studied receptor-mediated lysosomal sorting system in complex metazoans. In contrast, the biogenesis of lysosomes is poorly investigated in the less complex metazoan Drosophila melanogaster. We identified the novel type I transmembrane protein lysosomal enzyme receptor protein (LERP) with partial homology to the mammalian MPR300 encoded by Drosophila gene CG31072. LERP contains 5 lumenal repeats that share homology to the 15 lumenal repeats found in all identified MPR300. Four of the repeats display the P-lectin type pattern of conserved cysteine residues. However, the arginine residues identified to be essential for mannose 6-phosphate binding are not conserved. The recombinant LERP protein was expressed in mammalian cells and displayed an intracellular localization pattern similar to the mammalian MPR300. The LERP cytoplasmic domain shows highly conserved interactions with Drosophila and mammalian GGA adaptors known to mediate Golgi-endosome traffic of MPRs and other transmembrane cargo. Moreover, LERP rescues missorting of soluble lysosomal enzymes in MPR-deficient cells, giving strong evidence for a function that is equivalent to the mammalian counterpart. However, unlike the mammalian MPRs, LERP did not bind to the multimeric mannose 6-phosphate ligand phosphomannan. Thus ligand recognition by LERP does not depend on mannose 6-phosphate but may depend on a common feature present in mammalian lysosomal enzymes. Our data establish a potential important role for LERP in biogenesis of Drosophila lysosomes and suggest a GGA function also in the receptor-mediated lysosomal transport system in the fruit fly.  相似文献   

6.
Lysosomal enzymes containing mannose 6-phosphate recognition markers are sorted to lysosomes by mannose 6-phosphate receptors (MPRs). The physiological importance of this targeting mechanism is illustrated by I-cell disease, a fatal lysosomal storage disorder caused by the absence of mannose 6-phosphate residues in lysosomal enzymes. Most mammalian cells express two MPRs. Although the binding specificities, subcellular distribution and expression pattern of the two receptors can be differentiated, their coexpression is not understood. The larger of the two receptors with an M(r) of approximately 300,000 (MPR300), which also binds IGFII, appears to have a dominant role in lysosomal enzyme targeting, while the function of the smaller receptor with an M(r) of 46,000 (MPR46) is less clear. To investigate the in vivo function of the MPR46, we generated MPR46-deficient mice using gene targeting in embryonic stem cells. Reduced intracellular retention of newly synthesized lysosomal proteins in cells from MPR46 -/- mice demonstrated an essential sorting function of MPR46. The phenotype of MPR46 -/- mice was normal, indicating mechanisms that compensate the MPR46 deficiency in vivo.  相似文献   

7.
Phospholipidosis is a term commonly used to indicate a phospholipid storage disorder; in affected cells, phospholipids accumulate in lysosomes that acquire a multilamellar morphological appearance. Cationic amphiphilic drugs (CADs) are suggested to induce phospholipidosis by direct interaction of xenobiotics with intracellular phospholipids or by the action of xenobiotics on the synthesis and metabolism of phospholipids. To date, electron microscopy (EM) represents the most reliable and the preferred method for the demonstration of phospholipidotic cell damage. Nevertheless, EM has a low throughput, it is expensive, and it is not suitable for screening purposes.We discuss here the assessment of the the phospholipidogenic potential of drugs using a cell culture-based model. In this test, intracellular phospholipids of treated U-937 cells (a human monocyte-derived cell line) were measured using the fluorescent probe Nile red. Eleven CADs reported to induce phospholipidosisin vivo and eight nonphospholipidogenic drugs were tested. Results obtained with the U-937 model confirmed the phospholipidogenic potential of drugs tested as described in the literature. Results have also been correlated with data obtained with a physical-chemical model (chromatographic hydrophobicity index measurement). Good correlation was obtained, confirming that the physical-chemical properties of CADs play a crucial role in the development of phospholipidosis.This work demonstrates that the U-937 model is a rapid and sensitive method for the determination of phospholipidosis-mediated cell damage. The specificity and the predictive potency observed make this method suitable for screening purposes in pharmaceutical development.  相似文献   

8.
It has been reported that an accumulation of cholesterol within late endosomes/lysosomes in Niemann-Pick type C (NPC) fibroblasts and U18666A-treated cells causes impairment of retrograde trafficking of the cation-independent mannose 6-phosphate/IGF-II receptor (MPR300) from late endosomes to the trans-Golgi network (TGN). In apparent conflict with these results, here we show that as in normal fibroblasts, MPR300 localizes exclusively to the TGN in NPC fibroblasts as well as in normal fibroblasts treated with U18666A. This localization can explain why several lysosomal properties and functions, such as intracellular lysosomal enzyme activity and localization, the biosynthesis of cathepsin D, and protein degradation, are all normal in NPC fibroblasts. These results, therefore, suggest that the accumulation of cholesterol in late endosomes/lysosomes does not affect the retrieval of MPR300 from endosomes to the TGN. Furthermore, treatment of normal and NPC fibroblasts with chloroquine, which inhibits membrane traffic from early endosomes to the TGN, resulted in a redistribution of MPR300 to EEA1 and internalized transferrin-positive, but LAMP-2-negative, early-recycling endosomes. We propose that in normal and NPC fibroblasts, MPR300 is exclusively targeted from the TGN to early endosomes, from where it rapidly recycles back to the TGN without being delivered to late endosomes. This notion provides important insights into the definition of late endosomes, as well as the biogenesis of lysosomes.  相似文献   

9.
Cationic amphiphilic drugs (CADs) inhibit phospholipases competitively/uncompetitively. It has also been reported that CADs spontaneously accumulate in acidic organelles and increase their luminal pH, which may lead to deactivation of phospholipid-metabolising enzymes, causing cellular phospholipid accumulation. Recently, however, contradictory results have also been reported in that the luminal pH is not increased by CAD treatment. In this study, we examined whether the lysosomal/late endosomal acidic pH was maintained by vacuolar ATPase (v-ATPase) after treatment with chlorpromazine (CPZ) as a model CAD. The activity of lysosomal protease after CPZ treatment was also measured. Oregon Green–dextran–tetramethylrhodamine conjugate was employed to determine the luminal pH of the lysosomes/late endosomes in RAW264 cells. The luminal pH remained acidic after treatment with CPZ for 23 h, and the lysosomal protease activity was not decreased by 5-min CPZ treatment. Co-treatment with CPZ and bafilomycin A1 (v-ATPase inhibitor) raised the luminal pH. These results suggest that the lysosomal/late endosomal pH is not affected by a 23-h CPZ treatment. In addition, lysosomal enzymes presumably maintain their activity when CPZ accumulates. Our results imply that the pH homeostasis in lysosomes/late endosomes is strictly maintained even after a longer treatment with CADs.  相似文献   

10.
Recapture of lysosomal enzymes secreted by fibroblasts was inhibited by growing the cells in the presence of either free or immobilized antibodies against lysosomal enzymes or in the presence of phosphorylated carbohydrates known to interact with the cell-surface receptors for lysosomal enzymes. The following results were obtained. 1. Conditions that prevent recapture of released lysosomal enzymes increase the rate of extracellular accumulation of these enzymes up to twice that of controls. 2. Growing cells for 12 days in the presence of 0.5mm-mannose 6-phosphate, which decreases β-N-acetylglucosaminidase endocytosis to less than 10% of that of controls, has no effect on the intracellular activity of this and four other lysosomal enzymes. 3. Growing cells for 4 days in the presence of 50mm-mannose 6-phosphate, which is a 1000-fold higher concentration than that required for 50% inhibition of lysosomal enzyme endocytosis, leads to a 4-fold increase in extracellular β-N-acetylglucosaminidase accumulation and a decrease in intracellular enzyme. These results give evidence that, in fibroblasts, transfer of lysosomal enzymes into lysosomes does not require secretion before a receptor-mediated recapture [Hickman & Neufeld (1972) Biochem. Biophys. Res. Commun. 49, 992–999]. We propose that (a) lysosomal enzymes are present in a receptor-bound form in those vesicles that fuse with the cell membrane, (b) the major part of the lysosomal enzyme cycles via the cell surface in a receptor-bound form and (c) only a minor part of the lysosomal enzyme is released into the extracellular space during its life cycle.  相似文献   

11.
Antibodies that block the ligand binding site of the cation-dependent mannose 6-phosphate specific receptor (Mr 46,000 MPR) were used to probe the function of the receptor in transport of lysosomal enzymes. Addition of the antibodies to the medium of Morris hepatoma 7777 cells, which express only the Mr 46,000 MPR, resulted in a decreased intracellular retention and increased secretion of newly synthesized lysosomal enzymes. In fibroblasts and HepG2 cells that express the cation-independent mannose 6-phosphate specific receptor (Mr 215,000 MPR) in addition to the Mr 46,000 MPR, antibodies against the Mr 46,000 MPR inhibited the intracellular retention of newly synthesized lysosomal enzymes only when added to the medium together with antibodies against the Mr 215,000 MPR. Morris hepatoma (M.H.) 7777 did not endocytose lysosomal enzymes, while U937 monocytes, which express both types of MPR, internalized lysosomal enzymes. The uptake was inhibited by antibodies against the Mr 215,000 MPR, but not by antibodies against the Mr 46,000 MPR. These observations suggest that Mr 46,000 MPR mediates transport of endogenous but not endocytosis of exogenous lysosomal enzymes. Internalization of receptor antibodies indicated that the failure to mediate endocytosis of lysosomal enzymes is due to an inability of surface Mr 46,000 MPR to bind ligands rather than its exclusion from the plasma membrane or from internalization.  相似文献   

12.
The two known mannose 6-phosphate receptors (MPR 46 and MPR 300) mediate the transport of mannose 6-phosphate-containing lysosomal proteins to lysosomes. Endocytosis of extracellular mannose 6-phosphate ligands can only be mediated by MPR 300. Neither type of MPR appears to be sufficient for targetting the full complement of lysosomal enzymes to lysosomes. The complements of lysosomal enzymes transported by either of the two receptors are distinct but largely overlapping. Chimeric receptors were constructed in which the transmembrane and cytoplasmic domains of the two receptors were systematically exchanged. After expression of the chimeric receptors in cells lacking endogenous MPRs the binding of ligands, the subcellular distribution and the sorting efficiency for lysosomal enzymes were analyzed. All chimeras were functional, and their subcellular distribution was similar to that of wild type MPRs. The ability to endocytose lysosomal enzymes was restricted to receptors with the lumenal domain of MPR 300. The efficiency to sort lysosomal enzymes correlated with the lumenal and cytoplasmic domains of MPR 300. In contrast to the wild type receptors, a significant fraction of most of the chimeric receptors was misrouted to lysosomes, indicating that the signals determining the routing of MPRs have been fitted for the parent receptor polypeptides.  相似文献   

13.
Niemann-Pick disease type C (NPC), caused by mutations in the NPC1 gene or the NPC2 gene, is characterized by the accumulation of unesterified cholesterol and other lipids in endo/lysosomal compartments. NPC2 is a small, soluble, lysosomal protein that is targeted to this compartment via a mannose 6-phosphate-inhibitable pathway. To obtain insight into the roles of mannose 6-phosphate receptors (MPRs) in NPC2 targeting, we here examine the trafficking and function of NPC2 in fibroblast lines deficient in one or both of the two MPRs, MPR46 and MPR300. We demonstrate that either MPR alone is sufficient to transport NPC2 to the endo/lysosomal compartment, although MPR300 seems to be more efficient than MPR46. In the absence of both MPRs, NPC2 is secreted into the culture medium, and only a small amount of intracellular NPC2 can be detected, mainly in the endoplasmic reticulum. This leads to massive accumulation of unesterified cholesterol in the endo/lysosomal compartment of the MPR46/300-deficient fibroblasts, a phenotype similar to that of the NPC patient fibroblasts. In addition, we observed an upregulation of NPC1 protein and mRNA in the MPR-double-deficient cells. Taken together, our results suggest that the lysosomal targeting of NPC2 is strictly dependent on MPRs in fibroblasts.  相似文献   

14.
Factors which influence lysosomal enzyme accumulation in cultured cells have been studied. In cell types of both fibroblast (3T6) and epithelial (HeLa) origin, acid phosphatase and β-N-acetylglucosaminidase activities increase with increasing cell density. However, in other cell lines such as BHK or chick embryo fibroblasts, little or no accumulation of lysosomal enzymes occurred with increased cell density. Increased lysosomal enzyme activity need not necessarily be accompanied by alterations in rate of cell growth, rate of pinocytosis, or amount of internalized degradable macromolecules. The stimulus for lysosomal enzyme accumulation appears to require cell contact, since sparsely plated cells do not exhibit lysosomal enzyme accumulation. In 3T6 cells, lysosomal enzymes also accumulate during “step-down” conditions, such as amino acid or serum depletion, or during unbalanced growth resulting from inhibition of cytokinesis or DNA synthesis. Increases in the specific activity of lysosomal enzymes which occur during step-down conditions or unbalanced growth require cell contact, since they are not seen in sparse cells, but are observed in medium- and high-density cells incubated in serum-free medium. Studies employing actinomycin D suggest that lysosomal enzyme levels are regulated primarily via control of enzyme synthesis, rather than enzyme degradation.  相似文献   

15.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) mediate transport of lysosomal enzymes to lysosomes. Recent studies established that the receptors are conserved throughout vertebrates. Although we purified the mollusc receptors and identified only a lysosomal enzyme receptor protein (LERP) in the Drosophila melanogaster, little is known about their structure and functional roles in the invertebrates. In the present study, we purified the putative receptors from the highly evolved invertebrate, starfish, cloned the cDNA for the MPR 46, and expressed it in mpr(−/−) mouse embryonic fibroblast cells. Structural comparison of starfish receptor sequences with other vertebrate receptors gave valuable information on its extensive structural homology with the vertebrate MPR 46 proteins. The expressed protein efficiently sorts lysosomal enzymes within the cells establishing a functional role for this protein. This first report on the invertebrate MPR 46 further confirms the structural and functional conservation of the receptor not only in the vertebrates but also in the invertebrates.  相似文献   

16.
17.
Cathepsin D (EC 3.4.23.5) is one of the lysosomal enzymes responsible for proteolytic degradation in cells. By virtue of its mannose 6-phosphate residues, shortly after its synthesis, it is recognized by the receptors in the trans-Golgi network that mediate its transport to the lysosomes. The mammalian enzyme has been extensively characterized and several forms of cathepsin have also been identified. Cathepsins have also been isolated from other vertebrates and invertebrates and recent studies suggest that the lysosomal sorting machinery is evolutionarily conserved from fish to mammals. We recently characterized the putative mannose 6-phosphate receptors from the invertebrate starfish (Asterias rubens). In the present study we affinity purified the cathepsin D from this animal and biochemically characterized the same. Purified enzyme migrated as a single band on SDS-PAGE corresponding to a molecular mass of 45 kDa. The protein bound specifically to Con A-Sepharose gel and is glycosylated. The deglycosylated enzyme showed a molecular mass of ~ 40 kDa. Furthermore, an antibody raised for the purified enzyme in a rabbit recognizes the crude, the purified enzyme as well as the deglycosylated product in a western blot experiment. The enzyme in the extracts of different tissues can also be quantified by ELISA. We have further evaluated the binding of purified starfish cathepsin D with its receptor, MPR 300 (mannose 6-phosphate receptor) by immunoprecipitation. Cross-linking experiments using purified cathepsin D and MPR 300 revealed a cross-linked product that migrated with a higher molecular mass (345 kDa) compared to the enzyme (45 kDa). Furthermore the specificity of this interaction was also tested in a ligand blot experiment.  相似文献   

18.
Delivery of soluble lysosomal proteins to the lysosomes is dependent primarily on the mannose 6-phosphate receptors (MPRs) in mammals. However, in non-mammalian cells the role of MPR300 in sorting and trafficking of acid hydrolases to lysosomes is not fully understood till now. In this paper, we tested the role of MPR300 in sorting and trafficking of lysosomal enzymes in CEF cells using a small interfering RNA (siRNA) technology. Inactivation of MPR300 resulted in the secretion of large amounts of newly synthesized hydrolases into the medium and also inhibited the endocytosis of mannose 6-phospharylated ligands. Knockdown of MPR300 in CEF cells results in missorting of fucosidase and arylsulfatse A enzymes into the medium. The results indicated that the MPR300 in CEF cells plays a key role in sorting and trafficking of these soluble hydrolases.  相似文献   

19.
In mammals, Mannose 6-phosphate receptor proteins (MPR 300 and MPR 46) mediate transport of lysosomal enzymes to lysosomes. Both receptors have been found in non-mammalian vertebrates including fish. To investigate the presence of MPRs in invertebrates, MPR 300 protein was isolated from the mollusc unio by affinity chromatography. It was shown to exhibit biochemical and immunological properties similar to mammalian MPR 300.  相似文献   

20.
Reactive oxygen species (ROS) can induce lysosomal membrane permeabilization (LMP). Photoirradiation of murine hepatoma 1c1c7 cultures preloaded with the photosensitizer NPe6 generates singlet oxygen within acidic organelles and causes LMP and the activation of procaspases. Treatment with the cationic amphiphilic drugs (CADs) U18666A, imipramine, and clozapine stimulated the accumulation of filipin-stainable nonesterified cholesterol/sterols in late endosomes/lysosomes, but not in mitochondria. Concentration-response studies demonstrated an inverse relationship between lysosomal nonesterified cholesterol/sterol contents and susceptibility to NPe6 photoirradiation-induced intracellular membrane oxidation, LMP, and activation of procaspase-9 and -3. Similarly, the kinetics of restoration of NPe6 photoirradiation-induced LMP paralleled the losses of lysosomal cholesterol that occurred upon replating U18666A-treated cultures in CAD-free medium. Consistent with the oxidation of lysosomal cholesterol, filipin staining in U18666A-treated cultures progressively decreased with increasing photoirradiating light dose. U18666A also suppressed the induction of LMP and procaspase activation by exogenously added hydrogen peroxide. However, neither U18666A nor imipramine suppressed the induction of apoptosis by agents that did not directly induce LMP. These studies indicate that lysosomal nonesterified cholesterol/sterol content modulates susceptibility to ROS-induced LMP and possibly does so by being an alternative target for oxidants and lowering the probability of damage to other lysosomal membrane lipids and/or proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号