首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dex-Benzedrine (known as d-Benzedrine or SAT) acts in dopamine receptors of central nerve cell system. In clinic, SAT is used to treat a variety of diseases; meanwhile, it has dependence and addiction. In order to investigate the pharmacology and addiction mechanisms of SAT as a medicine, in this paper, we have studied the structure of D3R complex protein with SAT, and based on which, using potential mean force with umbrella samplings and the simulated phospholipid bilayer membrane (or POPC bilayer membrane), the molecular dynamics simulation was performed to obtain free energy changes upon the trajectories for SAT moving along the molecular channels within D3R. The free energy change for SAT transmitting toward the outside of cell along the functional molecular channel within D3R is 83.5 kJ mol?1. The change of free energy for SAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R is 87.7 kJ mol?1. Our previous work gave that the free energy for Levo-Benzedrine (RAT) transmitting toward the outside of cell along the functional molecular channel within D3R is 91.4 kJ mol?1, while it is 117.7 kJ mol?1 for RAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R. The values of free energy suggest that SAT relatively prefers likely to pass through the functional molecular channel within D3R for increasing the release of dopamine molecules resulting in a variety of functional effects for SAT. The obtained results show that the pharmacology and addiction mechanisms of SAT as a drug are closely related to the molecular dynamics and mechanism for SAT transmitting along molecular channels within D3R.  相似文献   

2.
Summary Although the structure of glasses is not really accessible by experimental methods, molecular dynamics is a very useful alternative, as we have tried to demonstrate in this chapter. The simulations reproduce the broad macroscopic features found in these glasses, both structural and transport-related, providing a basis for the more detailed atomic scale features found in the simulated structures. An understanding of important aspects of alkali ion transport, such as the mixed alkali effect and anomalous behaviour in some alumino-silicates, can thus be approached from the atomistic pictures of the glasses produced by the simulations. Although there is room for improvements to the potential models available, it should be clear that the further application of computer simulation methods, such as molecular dynamics, promises to provide much needed advances in glass science and engineering.  相似文献   

3.
4.
5.
Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3beta may be crucial modulators for hCSC maintenance in human heart.  相似文献   

6.
The establishment of a polarized morphology is an essential event in the differentiation of neurons into a single axon and dendrites. We previously showed that glycogen synthase kinase-3beta (GSK-3beta) is critical for specifying axon/dendrite fate by the regulation of the phosphorylation of collapsin response mediator protein-2 (CRMP-2). Here, we found that the overexpression of the small GTPase Ras induced the formation of multiple axons in cultured hippocampal neurons, whereas the ectopic expression of the dominant negative form of Ras inhibited the formation of axons. Inhibition of phosphatidylinositol-3-kinase (PI3-kinase) or extracellular signal-related kinase (ERK) kinase (MEK) suppressed the Ras-induced formation of multiple axons. The expression of the constitutively active form of PI3-kinase or Akt (also called protein kinase B) induced the formation of multiple axons. The overexpression of Ras prevented the phosphorylation of CRMP-2 by GSK-3beta. Taken together, these results suggest that Ras plays critical roles in establishing neuronal polarity upstream of the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway and mitogen-activated protein kinase cascade.  相似文献   

7.
Erythropoietin (EPO) prevents neuronal cell death through the activation of cell survival signals and the inhibition of apoptotic signals in models of neurodegenerative diseases. Here we investigated the neuroprotective effect of EPO in ketamine-induced neurotoxicity in primary cortical neurons. EPO in combination with ketamine greatly increased the cell viability and reduced the number of TUNEL-positive cells. To elucidate a possible mechanism by which EPO exerts its neuroprotective effect, we investigated the phosphoinositide3-kinase pathway using LY294002. The neuroprotection of EPO was prevented by LY294002. Immunoblotting revealed that EPO induced the phosphorylation/activation of Akt and phosphorylation/inactivation of glycogen synthase kinase-3beta (GSK-3β). Moreover, the caspase-3-like activity was increased by addition of ketamine, and decreased by administration of ketamine with EPO. Decreased caspase-3-like activity by administration of ketamine with EPO was restored by LY294002. Our results suggest that PI3K/Akt and GSK-3β pathway are involved in the neuroprotective effect of EPO. You Shang and Yan Wu have contributed equally to this work.  相似文献   

8.
B and T lymphocyte attenuator (BTLA) is a recently identified inhibitory receptor expressed by B and T cells. We previously identified two tyrosine-containing signaling motifs in the cytoplasmic domain of BTLA that interact with the SHP-1 and SHP-2 phosphatases. BTLA has a third conserved tyrosine-containing motif within the cytoplasmic domain, similar in sequence to a Grb-2 recruitment site. To identify specific interacting proteins that would be recruited to this motif, we carried out an unbiased screen by using synthetic peptides in active (e.g., phosphotyrosil-containing) or control (e.g., non-phosphorylated) forms as baits. Using mass spectrometry, we identified two specific interacting proteins, Grb-2 and the p85 subunit of PI3K. Further, we demonstrate that the interaction with Grb-2 is direct, whereas the recruitment of the p85 subunit by BTLA phosphotyrosile-containing peptides may be indirect via its association with Grb-2. These findings may provide biochemical basis for previously unexplained actions of BTLA.  相似文献   

9.
目的 研究灵芝多糖对3T3-L1胰岛素抵抗细胞模型PI-3K p85和GLUT4蛋白表达的影响,探讨灵芝多糖改善胰岛素抵抗的分子机制.方法 3T3-L1前脂肪细胞经1-甲基-3-异丁基-黄嘌呤、地塞米松、胰岛素诱导分化成3T3-L1脂肪细胞,以葡萄糖氧化酶法测定培养液中残余的葡萄糖含量.比较二甲双胍组,检测培养液中葡萄糖含量及PI-3K p85和GLUT4蛋白表达变化.结果 地塞米松联合胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,细胞对葡萄糖的摄取量减少.灵芝多糖可改善3T3-L1脂肪细胞胰岛素抵抗.胰岛素抵抗细胞的PI-3K p85和GLUT4蛋白表达明显减少;应用灵芝多糖后,相关蛋白表达增加.结论 灵芝多糖通过提高PI-3K p85和GLUT4蛋白的表达,参与胰岛素抵抗状态下3T3-L1细胞的葡萄糖代谢.  相似文献   

10.
Various mechanical properties of single-walled carbon nanotubes (SWCNT) and double-walled carbon nanotubes (DWCNT) are evaluated using molecular dynamics (MD) simulations. A tensioning process was first performed on a SWCNT whose interaction is based on the Brenner’s ‘second generation’ potential under varying length–diameter ratios and strain rates, in order to understand the SWCNT’s behaviour under axial tension. The results showed an increase in the SWCNT’s ultimate tensile strength and a decrease in critical strain given the conditions of increasing strain rate and a decreasing length–diameter ratio. Comparison was done with previous studies on axial tensioning of SWCNT to validate the results obtained from the set-up, based on the general stress–strain relationship and key mechanical properties such as the strain at failure and the Young’s modulus. A DWCNT was then constructed, and Lennard-Jones ‘12-6’ potential was used to describe the energy present between the nanotube layers. Extraction of the inner tube in a DWCNT was performed using two inner wall tubings of different diameters to draw comparison to the energies needed to separate fully the outer and inner tubing. Finally, a bending test was performed on two DWCNTs with different intertube separations. Insights into the entire bending process were obtained through analyses of the variations in the strain energy characteristic of the surface atoms near the bending site, as the DWCNT is gradually bent until failure.  相似文献   

11.
Abstract

Benzodipyrazoles have been previously evaluated for their in vitro CDK2 inhibitory activity. In the current investigation, we identified a six-feature common pharmacophore model (AADDRR.33) which is predicted to be responsible for CDK2 inhibition. An efficient 3D QSAR (r2?=?0.98 and q2?=?0.82) model was also constructed by employing PLS regression analysis. From the molecular docking studies, we examined the binding patterns of compound 7aa with the target protein and also calculated the binding energy using MM-GBSA calculations. Three hydrogen bonds with Lys 33, Glu 81, and Leu 83 are conserved even after 1000?ps run in a molecular dynamics simulation. We identified the slight displacement in bond lengths and the conformational changes occurred during the dynamics. The results also elucidated the protein residue–ligand interaction fractions which clearly explained the involvement of non-H-bond interactions.  相似文献   

12.
Abstract

The p90 ribosomal s6 kinase 2 (RSK2) is a promising target because of its over expression and activation in human cancer cells and tissues. Over the last few years, significant efforts have been made in order to develop RSK2 inhibitors to treat myeloma, prostatic cancer, skin cancer and etc., but with limited success so far. In this paper, pharmacophore modelling, molecular docking study and molecular dynamics (MD) simulation have been performed to explore the novel inhibitors of RSK2. Pharmacophore models were developed by 95 molecules having pIC50 ranging from 4.577 to 9.000. The pharmacophore model includes one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic feature (H) and one aromatic ring (R). It is the best pharmacophore hypothesis that has the highest correlation coefficient (R2 = 0.91) and cross validation coefficient (Q2 = 0.71) at 5 component PLS factor. It was evaluated using enrichment analysis and the best model was used for virtual screening. The constraints used in this study were docking score, ADME properties, binding free energy estimates and IFD Score to screen the database. Ultimately, 12 hits were identified as potent and novel RSK2 inhibitors. A 15 ns molecular dynamics (MD) simulation was further employed to validate the reliability of the docking results.  相似文献   

13.
Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3beta (GSK-3beta). Otherwise, recent studies suggest that sustained GSK-3beta inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3beta signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3beta on the inhibitory serine 9 residue; (2) the GSK-3beta inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3beta/p53 complexes. Moreover, the overexpression of an inactivated GSK-3beta mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3beta inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3beta and p53 on CD95 gene expression.  相似文献   

14.
Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons.  相似文献   

15.
16.
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, exerts its central effects mainly through the G-protein coupled receptor CB1, a component of the endocannabinoid system. Several in vitro and in vivo studies have reported neuroprotective effects of cannabinoids in excitotoxicity and neurodegeneration models. However, the intraneuronal signaling pathways activated in vivo by THC underlying its central effects remain poorly understood. We report that THC acute administration (10 mg/kg, i.p.) increases the phosphorylation of Akt in mouse hippocampus, striatum, and cerebellum. This phosphorylation was mediated by CB1 receptors as it was blocked by the selective CB1 antagonist rimonabant. Moreover, PI3K inhibition by wortmannin abrogated THC-induced phosphorylation of Akt, but blockade of extracellular signal-regulated protein kinases by SL327 did not modify this activation/phosphorylation of Akt. Moreover, administration of the dopaminergic D1 (SCH 23390) and D2 (raclopride) receptor antagonists did not block the activation of PI3K/Akt pathway induced in the striatum by cannabinoid receptor stimulation, suggesting that this effect is independent of the dopaminergic system. In addition, THC increased the phosphorylation of glycogen synthase kinase 3 beta. Therefore, activation of the PI3K/Akt/GSK-3 signaling pathway may be related to the in vivo neuroprotective properties attributed to cannabinoids.  相似文献   

17.
Interactions of anionic polyelectrolyte (PE) with cationic monomeric (MS) and dimeric surfactants (DS) have been investigated by coarse-grained molecular dynamics (MD) simulation. A PE/surfactant mixture is observed to evolve over time into micellar complex of increasing size. The critical aggregation concentration (CAC) is qualitatively found to be much lower than the critical micellization concentration (CMC) of the free surfactant. Compared to the monomeric analog, a DS interacts more strongly with the oppositely charged polyion chain. The equilibrium complex size becomes larger with increasing surfactant concentration. Simulation results are consistent with experimental observations and reveal that the electrostatic and hydrophobic interactions play an important role in the formation of micellar complex.  相似文献   

18.
Wild-type phosphotriesterase (PTE) prefers the SP-enantiomers over the corresponding RP-enantiomers by factors ranging from 10 to 90. To satisfy the binding modes of the PTE of SP- and RP-enantiomers, all-atom molecular dynamics simulations were carried out on two paraoxon SP and RP derivatives, namely, Sp-1 and Rp-1. Molecular mechanics Poisson–Boltzmann surface area and molecular mechanics generalized Born surface area (MM-PBSA and MM-GBSA) calculations indicated that His230 in Sp-1-PTE had a closer interaction with the substrate than that in Rp-1-PTE and that such interaction increased the catalytic efficiency of PTE for Sp-1. The steered molecular dynamics simulation indicated that, compared with Sp-1, Rp-1 in the unbinding (binding) may hinder some residue displacement, thus requiring more effort to escape the binding pocket of PTE. In addition, Trp131, Phe306, and Tyr309 are deemed important residues for the Sp-1 unbinding pathway via PTE, whereas Tyr309 alone is considered an important residue for the Rp-1 unbinding pathway. These results demonstrate the possibility of dramatically altering the stereoselectivity and overall reactivity of the native enzyme toward chiral substrates by modifying specific residues located within the active site of PTE.  相似文献   

19.
An understanding of the dissolution process of cellulose derivatives is important not only for basic research but also for industrial purposes. We investigated the dissolution process of cellulose triacetate II (CTA II) nano-sized crystal in DMSO solvent using molecular dynamics simulations. The nano-sized crystal consists of 18 CTA chains. During the 9 ns simulation, it was observed that one chain (C01) located at the corner of the lozenge crystal was solvated by the DMSO molecules and moved away from the remaining cluster into the DMSO solvent. The analysis showed that the breakage of the interaction between the H1, H3, and H5 hydrogens of the pyranose ring and the acetyl carbonyl oxygen in the C01 and C02 adjacent chains would be crucial for the dissolution of CTA. The DMSO molecules solvating around these atoms would prevent the re-crystallization of the CTA molecules and facilitate further dissolution.  相似文献   

20.
Glucagon-like peptide-1 receptor (GLP-1R) is a promising molecular target for developing drugs treating type 2 diabetes. We have predicted the complete three-dimensional structure of GLP-1R and the binding modes of several GLP-1R agonists, including GLP-1, Boc5, and Cpd1, through a combination of homology modeling, molecular docking, and long-time molecular dynamics simulation on a lipid bilayer. Our model can reasonably interpret the results of a number of mutation experiments regarding GLP-1R as well as the successful modification to GLP-1 by Liraglutide. Our model is also validated by a recently revealed crystal structure of the extracellular domain of GLP-1R. An activation mechanism of GLP-1R agonists is proposed based on the principal component analysis and normal mode analysis on our predicted GLP-1R structure. Before the complete structure of GLP-1R is determined through experimental means, our model may serve as a valuable reference for characterizing the interactions between GLP-1R and its agonists. Figure Comparison of our predicted model of rGLP-1R (left) with the recently revealed crystal structure of hGLP-1R (right)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号