首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Guan L  Nakae T 《Journal of bacteriology》2001,183(5):1734-1739
The MexABM efflux pump exports structurally diverse xenobiotics, utilizing the proton electrochemical gradient to confer drug resistance on Pseudomonas aeruginosa. The MexB subunit traverses the inner membrane 12 times and has two, two, and one charged residues in putative transmembrane segments 2 (TMS-2), TMS-4, and TMS-10, respectively. All five residues were mutated, and MexB function was evaluated by determining the MICs of antibiotics and fluorescent dye efflux. Replacement of Lys342 with Ala, Arg, or Glu and Glu346 with Ala, Gln, or Asp in TMS-2 did not have a discernible effect. Ala, Asn, or Lys substitution for Asp407 in TMS-4, which is well conserved, led to loss of activity. Moreover, a mutant with Glu in place of Asp407 exhibited only marginal function, suggesting that the length of the side chain at this position is important. The only replacements for Asp408 in TMS-4 or Lys939 in TMS-10 that exhibited significant function were Glu and Arg, respectively, suggesting that the native charge at these positions is required. In addition, double neutral mutants or mutants in which the charged residues Asp407 and Lys939 or Asp408 and Lys939 were interchanged completely lost function. An Asp408-->Glu/Lys939-->Arg mutant retained significant activity, while an Asp407-->Glu/Lys939-->Arg mutant exhibited only marginal function. An Asp407-->Glu/Asp408-->Glu double mutant also lost activity, but significant function was restored by replacing Lys939 with Arg (Asp407-->Glu/Asp408-->Glu/Lys939-->Arg). Taken as a whole, the findings indicate that Asp407, Asp408, and Lys939 are functionally important and raise the possibility that Asp407, Asp408, and Lys939 may form a charge network between TMS-4 and TMS-10 that is important for proton translocation and/or energy coupling.  相似文献   

2.
We have used site-specific mutagenesis to study the contribution of Glu 74 and the active site residues Gln 38, Glu 41, Glu 54, Arg 65, and His 85 to the catalytic activity and thermal stability of ribonuclease Sa. The activity of Gln38Ala is lowered by one order of magnitude, which confirms the involvement of this residue in substrate binding. In contrast, Glu41Lys had no effect on the ribonuclease Sa activity. This is surprising, because the hydrogen bond between the guanosine N1 atom and the side chain of Glu 41 is thought to be important for the guanine specificity in related ribonucleases. The activities of Glu54Gln and Arg65Ala are both lowered about 1000-fold, and His85Gln is totally inactive, confirming the importance of these residues to the catalytic function of ribonuclease Sa. In Glu74Lys, k(cat) is reduced sixfold despite the fact that Glu 74 is over 15 A from the active site. The pH dependence of k(cat)/K(M) is very similar for Glu74Lys and wild-type RNase Sa, suggesting that this is not due to a change in the pK values of the groups involved in catalysis. Compared to wild-type RNase Sa, the stabilities of Gln38Ala and Glu74Lys are increased, the stabilities of Glu41Lys, Glu54Gln, and Arg65Ala are decreased and the stability of His85Gln is unchanged. Thus, the active site residues in the ribonuclease Sa make different contributions to the stability.  相似文献   

3.
The crystal structures of oxidized and reduced plastocyanins from Synechococcus sp. PCC 7942 have been determined at 1.9 and 1.8 A resolution, respectively, at pH 5.0. The protein consists of only 91 amino acid residues, the smallest number known for a plastocyanin, and apparently lacks the mostly conserved acidic patch that is believed to be important for recognition with electron-transfer partners. The protein has two acidic residues, Glu42 and Glu85, around Tyr83, which is thought to be a possible conduit for electrons, but these are neutralized by Arg88 and Lys58. Residue Arg88 interacts with Tyr83 through a pi-pi interaction in which the guanidinium group of the former completely overlaps the aromatic ring of the tyrosine. Reduction of the protein at pH 5.0 causes a lengthening of one Cu-N(His) bond by 0.36 A, despite the small rms deviation of 0.08 A calculated for the backbone atoms. Moreover, significant conformational changes of Arg88 and Lys58, along with the movement of a water molecule adjacent to the OH group of Tyr83, were observed on reduction; the guanidinium group of Arg88 rotates by more than 11 degrees, and the water molecule moves by 0.42 A. The changes around the copper site and the alterations around Tyr83 may be linked to the reduction of the copper.  相似文献   

4.
Formation of the integrin alphabeta heterodimer is essential for cell surface expression and function. At the core of the alphabeta interface is a conserved Arg/Lys "finger" from the beta-subunit that inserts into a cup-like "cage" formed of two layers of aromatic residues in the alpha-subunit. We evaluated the role of this residue in heterodimer formation in an alphaA-lacking and an alphaA-containing integrin alphaVbeta3 and alphaMbeta2 (CD11b/CD18), respectively. Arg261 of beta3 was mutated to Ala or Glu; the corresponding Lys252 of beta2 was mutated to Ala, Arg, Glu, Asp, or Phe; and the effects on heterodimer formation in each integrin examined by ELISA and immunoprecipitation in HEK 293 cells cotransfected with plasmids encoding the alpha- and beta-subunits. The Arg261Glu (but not Arg261Ala) substitution significantly impaired cell surface expression and heterodimer formation of alphaVbeta3. Although Lys252Arg, and to a lesser extent Lys252Ala, were well tolerated, each of the remaining substitutions markedly reduced cell surface expression and heterodimer formation of CD11b/CD18. Lys252Arg and Lys252Ala integrin heterodimers displayed a significant increase in binding to the physiologic ligand iC3b. These data demonstrate an important role of the Arg/Lys finger in formation of a stable integrin heterodimer, and suggest that subtle changes at this residue affect the activation state of the integrin.  相似文献   

5.
Recent studies of proteins with reversed charged residues have demonstrated that electrostatic interactions on the surface can contribute significantly to protein stability. We have used the approach of reversing negatively charged residues using Arg to evaluate the effect of the electrostatics context on the transition temperature (T(m)), the unfolding Gibbs free energy change (DeltaG), and the unfolding enthalpy change (DeltaH). We have reversed negatively charged residues at a pocket (Asp9) and protrusions (Asp10, Asp20, Glu85), all located in interconnecting segments between elements of secondary structure on the surface of Arg73Ala Escherichia coli thioredoxin. DSC measurements indicate that reversal of Asp in a pocket (Asp9Arg/Arg73Ala, DeltaT(m) = -7.3 degrees C) produces a larger effect in thermal stability than reversal at protrusions: Asp10Arg/Arg73Ala, DeltaT(m) = -3.1 degrees C, Asp20Arg/Arg73Ala, DeltaT(m) = 2.0 degrees C, Glu85Arg/Arg73Ala, DeltaT(m) = 3.9 degrees ). The 3D structure of thioredoxin indicates that Asp20 and Glu85 have no nearby charges within 8 A, while Asp9 does not only have Asp10 as sequential neighbor, but it also forms a 5-A long-range ion pair with the solvent-exposed Lys69. Further DSC measurements indicate that neutralization of the individual charges of the ion pair Asp9-Lys69 with nonpolar residues produces a significant decrease in stability in both cases: Asp9Ala/Arg73Ala, DeltaT(m) = -3.7 degrees C, Asp9Met/Arg73Ala, DeltaT(m) = -5.5 degrees C, Lys69Leu/Arg73Ala, DeltaT(m) = -5.1 degrees C. However, thermodynamic analysis shows that reversal or neutralization of Asp9 produces a 9-15% decrease in DeltaH, while both reversal of Asp at protrusions and neutralization of Lys69 produce negligible changes. These results correlate well with the NMR analysis, which demonstrates that only the substitution of Asp9 produces extensive conformational changes and these changes occur in the surroundings of Lys69. Our results led us to suggest that reversal of a negative charge at a pocket has a larger effect on stability than a similar reversal at a protrusion and that this difference arises largely from short-range interactions with polar groups within the pocket, rather than long-range interactions with solvent-exposed charged groups.  相似文献   

6.
The predicted active site of chorismate mutase of baker's yeast Saccharomyces cerevisiae has been studied by continuum electrostatics, molecular surface/volume calculations, and molecular modeling. Our study shows that despite being subject to an allosteric transition, the enzyme's active-site pocket neither decreased in volume nor deformed significantly in shape between the active R state and the inactive T state. We find that the polar atmosphere in the pocket is responsible for the enzyme's affinity. A single amino acid, Glu23, can adequately account for the atmospheric variation. This residue swings into the active-site pocket from the R state to the T state. In the R state, Glu23 on helix H2 doubly pairs with Arg204 and Lys208 of H11, which is packed against H2. In the T state, a slide occurs between H11 and H2 such that Glu23 can no longer interact with Lys208 and competes with Asp24 for interacting with Arg204. Consequently, Glu23 is found in the T state to couple with Arg157, an active-site residue critical to substrate binding. The tandem sliding of H11 in both monomers profoundly changes the interactions in the dimer interface. The loop between H11 and H12 demonstrates the largest conformational change. Hence, we establish a connection between the allosteric transition and the activity of the enzyme. The conformational change in the transition is suggested to propagate into the active-site pocket via a series of polar interactions that result in polarity reversal in the active-site pocket, which regulates the enzyme's activity. Proteins 31:445–452, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.  相似文献   

8.
It has been suggested that phosphorylation at serine 9 near the N-terminus of glycogen synthase kinase-3β (GSK-3β) mimics the prephosphorylation of its substrate and, therefore, the N-terminus functions as a pseudosubstrate. The molecular basis for the pseudosubstrate's binding to the catalytic core and autoinhibition has not been fully defined. Here, we combined biochemical and computational analyses to identify the potential residues within the N-terminus and the catalytic core engaged in autoinhibition of GSK-3β. Bioinformatic analysis found Arg4, Arg6, and Ser9 in the pseudosubstrate sequence to be extremely conserved through evolution. Mutations at Arg4 and Arg6 to alanine enhanced GSK-3β kinase activity and impaired its ability to autophosphorylate at Ser9. In addition, and unlike wild-type GSK-3β, these mutants were unable to undergo autoinhibition by phosphorylated Ser9. We further show that Gln89 and Asn95, located within the catalytic core, interact with the pseudosubstrate. Mutation at these sites prevented inhibition by phosphorylated Ser9. Furthermore, the respective mutants were not inhibited by a phosphorylated pseudosubstrate peptide inhibitor. Finally, computational docking of the pseudosubstrate into the catalytic active site of the kinase suggested specific interactions between Arg6 and Asn95 and of Arg4 to Asp181 (apart from the interaction of phosphorylated serine 9 with the “phosphate binding pocket”). Altogether, our study supports a model of GSK-3-pseudosubstrate autoregulation that involves phosphorylated Ser9, Arg4, and Arg6 within the N-terminus and identified the specific contact sites within the catalytic core.  相似文献   

9.
Escherichia coli MutT protein hydrolyzes 8-oxo-7,8-dihydro-2′-dGTP (8-oxo-dGTP) to the monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine (8-oxo-G) into nascent DNA. Bacterial and mammalian homologs of MutT protein share the phosphohydrolase module (MutT: Gly37→Gly59). By saturation mutagenesis of conserved residues in the MutT module, four of the 10 conserved residues (Gly37, Gly38, Glu53 and Glu57) were revealed to be essential to suppress spontaneous A:T→C:G transversion mutation in a mutT mutator strain. For the other six residues (Lys39, Glu44, Thr45, Arg52, Glu56 and Gly59), many positive mutants which can suppress the spontaneous mutation were obtained; however, all of the positive mutants for Glu44 and Arg52 either partially or inefficiently suppressed the mutation, indicating that these two residues are also important for MutT function. Several positive mutants for Lys39, Thr45, Glu56 and Gly59 efficiently decreased the elevated spontaneous mutation rate, as seen with the wild-type, hence, these four residues are non-essential for MutT function. As Lys38 and Glu55 in human MTH1, corresponding to the non-essential residues Lys39 and Glu56 in MutT, could not be replaced by any other residue without loss of function, different structural features between the two modules of MTH1 and MutT proteins are evident.  相似文献   

10.
Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase–DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place.  相似文献   

11.
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Human Ngb is involved in neuroprotection under oxidative stress conditions such as ischemia and reperfusion. We previously demonstrated that, on the one hand, human ferric Ngb binds to the α-subunit of heterotrimeric G proteins (Gαi) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Gαi. On the other hand, zebrafish Ngb does not exhibit GDI activity. By using wild-type and Ngb mutants, we demonstrated that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity. The crucial residues for both GDI and neuroprotective activity, corresponding to Glu53, Arg97, Glu118, and Glu151 of human Ngb, are conserved among boreotheria of mammalia. Recently, we found that zebrafish, but not human, Ngb can translocate into cells and clarified that module M1 of zebrafish Ngb is important for protein transduction. By performing site-directed mutagenesis, we showed that Lys7, Lys9, Lys21, and Lys23 of zebrafish Ngb are crucial for protein transduction activity. Because these residues are conserved among fishes, but not among mammals, birds, reptilians, or amphibians, the ability to penetrate cell membranes may be a unique characteristic of fish Ngb proteins. Moreover, we clarified that zebrafish Ngb interacts with negatively charged cell-surface glycosaminoglycan. Taken together, these results suggest that the function of Ngb proteins has been changing dynamically throughout the evolution of life.  相似文献   

12.
We identified two conserved polar amino acids within different membrane domains (MD) of Streptococcus equisimilis hyaluronan synthase (seHAS), Lys48 in MD2 and Glu327 in MD4. In eukaryotic HASs, the position of the Glu is very similar and the Lys is replaced by a conserved polar Gln. To assess whether Lys48 and Glu327 interact or influence seHAS activity, we investigated the effects of changing Lys48 to Arg or Glu and Glu327 to Lys, Asp, or Gln. Mutants, including a double switch variant with Lys48 and Glu327 exchanged, were expressed and assayed in Escherichia coli membranes. SeHASE327Q and seHASE327K were expressed at low levels, whereas seHASE327D and the Lys48 mutants were expressed well. The specific enzyme activities (relative to wild type) were 17 and 7% for the K48R and K48E mutants and 26 and 38% for the E327Q and E327D mutants, respectively. In contrast, seHAS(E327K) showed only 0.16% of wild-type activity but was rescued over 46-fold by changing Lys48 to Glu. Expression of the seHASE327K,K48E protein was also rescued to near wild-type levels. Based on size exclusion chromatography coupled to multiangle laser light scattering analysis, all the variants synthesized hyaluronan (HA) of smaller weight-average molar mass than wild-type enzyme (3.6 MDa); the smallest HA (approximately 0.6 MDa) was made by seHASE327K,K48E and seHASK48E. The results indicate that Glu327 within MD4 is a critical residue for the stability of seHAS, that it may interact with Lys48 within MD2, and that these residues are involved in the ability of HAS to synthesize very large HA.  相似文献   

13.
HNK-1 glycan, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAc-->R, is uniquely enriched in neural cells and natural killer cells and is thought to play important roles in cell-cell interaction. HNK-1 glycan synthesis is dependent on HNK-1 sulfotransferase (HNK-1ST), and cDNAs encoding human and rat HNK-1ST have been recently cloned. HNK-1ST belongs to the sulfotransferase gene family, which shares two homologous sequences in their catalytic domains. In the present study, we have individually mutated amino acid residues in these conserved sequences and determined how such mutations affect the binding to the donor substrate, adenosine 3'-phosphate 5'-phosphosulfate, and an acceptor. Mutations of Lys(128), Arg(189), Asp(190), Pro(191), and Ser(197) to Ala all abolished the enzymatic activity. When Lys(128) and Asp(190) were conservatively mutated to Arg and Glu, respectively, however, the mutated enzymes still maintained residual activity, and both mutant enzymes still bound to adenosine 3',5'-diphosphate-agarose. K128R and D190E mutant enzymes, on the other hand, exhibited reduced affinity to the acceptor as demonstrated by kinetic studies. These findings, together with those on the crystal structure of estrogen sulfotransferase and heparan sulfate N-deacetylase/sulfotransferase, suggest that Lys(128) may be close to the 3-hydroxyl group of beta-glucuronic acid in a HNK-1 acceptor. In contrast, the effect by mutation at Asp(190) may be due to conformational change because this amino acid and Pro(191) reside in a transition of the secondary structure of the enzyme. These results indicate that conserved amino acid residues in HNK-1ST play roles in maintaining a functional conformation and are directly involved in binding to donor and acceptor substrates.  相似文献   

14.
Beside of the protein crystallography or NMR, another attractive option in protein structure analysis has recently appeared: computer modeling of the protein structure based on homology and similarity with proteins of already known structures. We have used the combination of computer modeling with spectroscopic techniques, such as steady-state or time-resolved fluorescence spectroscopy, and with molecular biology techniques. This method could provide useful structural information in the cases where crystal or NMR structure is not available. Molecular modeling of the ATP site within the H4-H5-loop revealed eight amino acids residues, namely besides the previously reported amino acids Asp443, Lys480, Lys501, Gly502 and Arg544, also Glu446, Phe475 and Gln482, which form the complete ATP recognition site. Moreover, we have proved that a hydrogen bond between Arg423 and Glu472 supports the connection of two opposite halves of the ATP-binding pocket. Similarly, the conserved residue Pro489 is important for the proper interaction of the third and fourth beta-strands, which both contain residues that take part in the ATP-binding. Alternatively, molecular dynamics simulation combined with dynamic fluorescence spectroscopy revealed that 14-3-3 zeta C-terminal stretch is directly involved in the interaction of 14-3-3 protein with the ligand. Phosphorylation at Thr232 induces a conformational change of the C-terminus, which is presumably responsible for observed inhibition of binding abilities. Phosphorylation at Thr232 induces more extended conformation of 14-3-3zeta C-terminal stretch and changes its interaction with the rest of the 14-3-3 molecule. This could explain negative regulatory effect of phosphorylation at Thr232 on 14-3-3 binding properties.  相似文献   

15.
The N-terminal region residues, Lys11, Arg13, and Arg24, of the plasma coagulation inhibitor, antithrombin, have been implicated in binding of the anticoagulant polysaccharide, heparin, from the identification of natural mutants with impaired heparin binding or by the X-ray structure of a complex of the inhibitor with a high-affinity heparin pentasaccharide. Mutations of Lys11 or Arg24 to Ala in this work each reduced the affinity for the pentasaccharide approximately 40-fold, whereas mutation of Arg13 to Ala led to a decrease of only approximately 7-fold. All three substitutions resulted in the loss of one ionic interaction with the pentasaccharide and those of Lys11 or Arg24 also in 3-5-fold losses in affinity of nonionic interactions. Only the mutation of Lys11 affected the initial, weak interaction step of pentasaccharide binding, decreasing the affinity of this step approximately 2-fold. The mutations of Lys11 and Arg13 moderately, 2-7-fold, altered both rate constants of the second, conformational change step, whereas the substitution of Arg24 appreciably, approximately 25-fold, reduced the reverse rate constant of this step. The N-terminal region of antithrombin is thus critical for high-affinity heparin binding, Lys11 and Arg24 being responsible for maintaining appreciable and comparable binding energy, whereas Arg13 is less important. Lys11 is the only one of the three residues that is involved in the initial recognition step, whereas all three residues participate in the conformational change step. Lys11 and Arg13 presumably bind directly to the heparin pentasaccharide by ionic, and in the case of Lys11, also nonionic interactions. However, the role of Arg24 most likely is indirect, to stabilize the heparin-induced P-helix by interacting intramolecularly with Glu113 and Asp117, thereby positioning the crucial Lys114 residue for optimal ionic and nonionic interactions with the pentasaccharide. Together, these findings show that N-terminal residues of antithrombin make markedly different contributions to the energetics and dynamics of binding of the pentasaccharide ligand to the native and activated conformational states of the inhibitor that could not have been predicted from the X-ray structure.  相似文献   

16.
The RNA triphosphatase component (CaCet1p) of the mRNA capping apparatus of the pathogenic fungus Candida albicans differs mechanistically and structurally from the RNA triphosphatase of mammals. Hence, CaCet1p is an attractive antifungal target. Here we identify a C-terminal catalytic domain of CaCet1p from residue 257 to 520 and characterize a manganese-dependent and cobalt-dependent NTPase activity intrinsic to CaCet1p. The NTPase can be exploited to screen in vitro for inhibitors. The amino acids that comprise the active site of CaCet1p were identified by alanine-scanning mutagenesis, which was guided by the crystal structure of the homologous RNA triphosphatase from Saccharomyces cerevisiae (Cet1p). Thirteen residues required for the phosphohydrolase activity of CaCet1p (Glu287, Glu289, Asp363, Arg379, Lys396, Glu420, Arg441, Lys443, Arg445, Asp458, Glu472, Glu474 and Glu476) are located within the hydrophilic interior of an eight-strand β barrel of Cet1p. Each of the eight strands contributes at least one essential amino acid. The essential CaCet1p residues include all of the side chains that coordinate manganese and sulfate (i.e., γ phosphate) in the Cet1p product complex. These results suggest that the active site structure and catalytic mechanism are conserved among fungal RNA triphosphatases.  相似文献   

17.
Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein.  相似文献   

18.
The Escherichia coli udp gene encodes uridine phosphorylase (UP), which catalyzes the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. The X-ray structure of E. coli UP resolved by two different groups produced conflicting results. In order to cast some light on the E. coli UP catalytic site, we mutagenized several residues in UP and measured by RP-HPLC the phosphorolytic activity of the mutant UP proteins in vitro. Mutations Thr94Ala, Phe162Ala, and Tyr195Gly caused a drastic decrease in UP activity. These three residues were suggested to be involved in the nucleoside binding site. However, surprisingly, Tyr195Ala caused a relative increase in enzymatic activity. Both Met197Ala and Met197Ser conserved low activity, suggesting a minor role for this residue in the UP active site. Glu196Ala completely lost UP activity, whereas the more conservative Glu196Asp mutation was still partially active, confirming the importance of maintaining the correct charge in the surroundings of this position. Glu198 was mutated to either Gly, Asp and Gln. All three substitutions caused complete loss of enzymatic activity suggesting an important role of Glu198 both in ribose binding and in interaction with phosphate ions. Arg30Ala and Arg91Ala eliminated UP activity, whereas Arg30Lys and Arg91Lys presented a very low activity, confirming that these residues might interact with and stabilize the phosphate ions. Ile69Ala did not decrease UP activity, whereas His8Ala lowered the activity to about 20%. Both amino acids were suggested to take part in subunit interactions. Our results confirm the structural similarity between E. coli UP and E. coli purine nucleoside phosphorylase (PNP).  相似文献   

19.
The nucleotide sequence of the gene for a highly alkaline, low-molecular-mass pectate lyase (Pel-15) from an alkaliphilic Bacillus isolate was determined. It harbored an open reading frame of 672 bp encoding the mature enzyme of 197 amino acids with a predicted molecular mass of 20 924 Da. The deduced amino-acid sequence of the mature enzyme showed very low homology (< 20.4% identity) to those of known pectinolytic enzymes in the large pectate lyase superfamily (the polysaccharide lyase family 1). In an integrally conserved region designated the BF domain, Pel-15 showed a high degree of identity (40.5% to 79.4%) with pectate lyases in the polysaccharide lyase family 3, such as PelA, PelB, PelC, and PelD from Fusarium solani f. sp. pisi, PelB from Erwinia carotovora ssp. carotovora, PelI from E. chrysanthemi, and PelA from a Bacillus strain. By site-directed mutagenesis of the Pel-15 gene, we replaced Lys20 in the N-terminal region, Glu38, Lys41, Glu47, Asp63, His66, Trp78, Asp80, Glu83, Asp84, Lys89, Asp106, Lys107, Asp126, Lys129, and Arg132 in the BF domain, and Arg152, Tyr174, Lys182, and Lys185 in the C-terminal region of the enzyme individually with Ala and/or other amino acids. Consequently, some carboxylate and basic residues selected from Glu38, Asp63, Glu83, Asp106, Lys107, Lys129, and Arg132 were suggested to be involved in catalysis and/or calcium binding. We constructed a chimeric enzyme composed of Ala1 to Tyr105 of Pel-15 in the N-terminal regions, Asp133 to Arg159 of FsPelB in the internal regions, and Gln133 to Tyr197 of Pel-15 in the C-terminal regions. The substituted PelB segment could also express beta-elimination activity in the chimeric molecule, confirming that Pel-15 and PelB share a similar active-site topology.  相似文献   

20.
We have recorded (13)C NMR spectra of [3-(13)C]Ala-labeled wild-type bacteriorhodopsin (bR) and its mutants at Arg(82), Asp(85), Glu(194), and Glu(204) along the extracellular proton transfer chain. The upfield and downfield displacements of the single carbon signals of Ala(196) (in the F-G loop) and Ala(126) (at the extracellular end of helix D), respectively, revealed conformational differences in E194D, E194Q, and E204Q from the wild type. The same kind of conformational change at Ala(126) was noted also in the Y83F mutant, which lacks the van der Waals contact between Tyr(83) and Ala(126) present in the wild type. The absence of a negative charge at Asp(85) in the site-directed mutant D85N induced global conformational changes, as manifested in displacements or suppression of peaks from the transmembrane helices, cytoplasmic loops, etc., as well as the local changes at Ala(126) and Ala(196) seen in the other mutants. Unexpectedly, no conformational change at Ala(126) was observed in R82Q (even though Asp(85) is protonated at pH 6) or in D85N/R82Q. The changes induced in the Ala(126) signal when Asp(85) is uncharged could be interpreted therefore in terms of displacement of the positive charge of Arg(82) toward Tyr(83), where Ala(126) is located. It is possible that disruption of the proton transfer chain after protonation of Asp(85) in the photocycle could cause the same kind of conformational change we detect at Ala(196) and Ala(126). If so, the latter change would be also the result of rearrangement of the side chain of Arg(82).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号